Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38600616

RESUMO

Some synthetic dyes are fraudulently added into spices to appeal visually to consumers. Food regulations in several countries, including the United States, Australia, Japan and the European Union, strictly prohibit the use of unauthorised synthetic dyes in food. Nevertheless, illegal practices persist, where spices contaminated with potentially carcinogenic dyes have been documented, posing potential health risks to consumers. In the present study, 14 synthetic dyes were investigated through liquid chromatography/tandem mass spectrometry in 252 commercially available spices in the Singapore market. In 18 out of these (7.1%) at least 1 illegal dye was detected at concentrations ranging from 0.010 to 114 mg/kg. Besides potential health risks, presence of these adulterants also reflects the economic motivations behind their fraudulent use. Findings in the present study further emphasise the need for increased public awareness, stricter enforcement, and continuous monitoring of illegal synthetic dyes in spices to ensure Singapore's food safety.

2.
Foods ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397488

RESUMO

A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.

3.
JDS Commun ; 5(1): 7-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223384

RESUMO

Nisin, a bacteriocin produced through fermentation using bacterium Lactococcus lactis, has several commercial variants such as nisin A and nisin Z. Nisin serves as a natural preservative with antimicrobial properties in various food products, including dairy and beverages, for extending product shelf life. The efficacy and safety of nisin A as a bacteriocin has been well characterized. However, there is limited evidence regarding the efficacy, stability, and safety of nisin Z as a food preservative, as it has not undergone comprehensive regulatory reviews. In this work, we studied the stability of nisin A and Z in a selection of yogurt drinks and found nisin to be unstable, particularly in fruit-flavored yogurt drinks. Both nisin A and Z could experience significant degradation leading to the nisin parent ion peaks dropping below detectable level before the product's expiry date. Compared with nisin A, the formation of oxidized metabolite nisin Z+O appeared to be the predominant reaction for nisin Z. These findings highlight the need for further scientific research to understand the behavior of nisin Z under different application conditions, which is crucial for assessing the efficacy and safety of nisin Z under these conditions. One potential application of this knowledge is to optimize the formulation of yogurt-based drinks to stabilize nisin Z and sustain its biopreservative function throughout the product's shelf life. Additionally, the current study shows that for the testing of the presence of nisin A or nisin Z, it is imperative to cover both the parent and the main degradant(s) of nisin. This is especially true for nisin Z, for which the regulatory approval status may vary in different markets. As such, the confirmative identification of nisin Z and its key metabolites in commercial products would be essential.

4.
J Proteome Res ; 21(8): 1948-1960, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35838755

RESUMO

Englerin A (EA) is a small-molecule natural product with selective cytotoxicity against renal cancer cells. EA has been shown to induce apoptosis and cell death through cell-cycle arrest and/or insulin signaling pathways. However, its biological mode of action or targets in renal cancer remains enigmatic. In this study, we employed advanced mass spectrometry-based phosphoproteomics approaches to identify EA's functional roles in renal cancer. We identified 10,940 phosphorylation sites, of which 706 sites exhibited EA-dependent phosphorylation changes. Integrated analysis of motifs and interaction networks suggested activation of stress-activated kinases including p38 upon EA treatment. Of note, a downstream target of p38, Hsp27, was found to be hyperphosphorylated on multiple sites upon EA treatment. Among these, a novel site Ser65 on Hsp27, which was further validated by targeted proteomics, was shown to be crucial for EA-induced cytotoxicity in renal cancer cells. Taken together, these data reveal the complex signaling cascade that is induced upon EA treatment and importantly provide insights into its effects on downstream molecular signaling.


Assuntos
Proteínas de Choque Térmico HSP27 , Neoplasias Renais , Apoptose , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Fosforilação , Sesquiterpenos de Guaiano/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
5.
Sci Rep ; 12(1): 5353, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354859

RESUMO

Non-ribosomal peptide synthetases (NRPS) are multi-modular/domain enzymes that catalyze the synthesis of bioactive peptides. A crucial step in the process is peptide elongation accomplished by the condensation (C) domain with the aid of a peptidyl carrier or thiolation (T) domain. Here, we examined condensation reaction carried out by NRPS AmbB involved in biosynthesis of L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) in P. aeruginosa. We determined crystal structures of the truncated T-C bidomain of AmbB in three forms, the apo enzyme with disordered T domain, the holo form with serine linked phosphopantetheine (Ppant) and a holo form with substrate (L-alanine) loaded onto Ppant. The two holo forms feature the T domain in a substrate-donation conformation. Mutagenesis combined with functional assays identified residues essential for the attachment of Ppant, anchoring the Ppant-L-Ala in the donor catalytic channel and the role of the conserved His953 in condensation activity. Altogether, these results provide structural insights into the condensation reaction at the donor site with a substrate-bound C domain of AmbB and lay the foundation for understanding the molecular mechanism of condensation which is crucial for AMB synthesis.


Assuntos
Peptídeo Sintases , Domínio Catalítico , Peptídeo Sintases/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína
6.
Elife ; 102021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870592

RESUMO

The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP exchange factor (GEF) GBF1 and small GTPase Arf1. Here, we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898, are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation, and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and widespread mechanism.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Quinases da Família src/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fosforilação , Transporte Proteico , Quinases da Família src/metabolismo
7.
Nat Commun ; 12(1): 5315, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493720

RESUMO

Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.


Assuntos
Junções Intercelulares/metabolismo , Proteínas dos Microfilamentos/genética , Nectinas/genética , Proteômica/métodos , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/genética , Biotina/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular Tumoral , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Junções Intercelulares/genética , Junções Intercelulares/ultraestrutura , Marcação por Isótopo , Espectrometria de Massas , Proteínas dos Microfilamentos/metabolismo , Nectinas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo
8.
J Cell Biol ; 218(9): 2896-2918, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31350280

RESUMO

Meiosis generates four genetically distinct haploid gametes over the course of two reductional cell divisions. Meiotic divisions are characterized by the coordinated deposition and removal of various epigenetic marks. Here we propose that nuclear respiratory factor 1 (NRF1) regulates transcription of euchromatic histone methyltransferase 1 (EHMT1) to ensure normal patterns of H3K9 methylation during meiotic prophase I. We demonstrate that cyclin-dependent kinase (CDK2) can bind to the promoters of a number of genes in male germ cells including that of Ehmt1 through interaction with the NRF1 transcription factor. Our data indicate that CDK2-mediated phosphorylation of NRF1 can occur at two distinct serine residues and negatively regulates NRF1 DNA binding activity in vitro. Furthermore, induced deletion of Cdk2 in spermatocytes results in increased expression of many NRF1 target genes including Ehmt1 We hypothesize that the regulation of NRF1 transcriptional activity by CDK2 may allow the modulation of Ehmt1 expression, therefore controlling the dynamic methylation of H3K9 during meiotic prophase.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Regulação Enzimológica da Expressão Gênica , Histona-Lisina N-Metiltransferase/biossíntese , Prófase Meiótica I/fisiologia , Fator 1 Nuclear Respiratório/metabolismo , Espermatócitos/metabolismo , Animais , Quinase 2 Dependente de Ciclina/genética , Deleção de Genes , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Camundongos Knockout , Fator 1 Nuclear Respiratório/genética , Espermatócitos/citologia
9.
Proc Natl Acad Sci U S A ; 116(14): 6754-6759, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886083

RESUMO

Targeted proteomic mass spectrometry is emerging as a salient clinical diagnostic tool to track protein biomarkers. However, its strong analytical properties have not been exploited in the diagnosis and typing of flaviviruses. Here, we report the development of a sensitive and specific single-shot robust assay for flavivirus typing and diagnosis using targeted mass spectrometry technology. Our flavivirus parallel reaction monitoring assay (fvPRM) has the ability to track secreted flaviviral nonstructural protein 1 (NS1) over a broad diagnostic and typing window with high sensitivity, specificity, extendibility, and multiplexing capability. These features, pivotal and pertinent to efficient response toward flavivirus outbreaks, including newly emerging flavivirus strains, circumvent the limitations of current diagnostic assays. fvPRM thus carries high potential in positioning itself as a forerunner in delivering early and accurate diagnosis for disease management.


Assuntos
Vírus da Dengue , Dengue/sangue , Dengue/diagnóstico , Glicoproteínas/sangue , Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas não Estruturais Virais/sangue , Feminino , Humanos , Masculino
10.
Oncogene ; 38(9): 1508-1519, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30305722

RESUMO

Aberrant activation of Wnt/ß-catenin signaling pathway is essential for the development of AML; however, the mechanistic basis for this dysregulation is unclear. PRL-3 is an oncogenic phosphatase implicated in the development of LSCs. Here, we identified Leo1 as a direct and specific substrate of PRL-3. Serine-dephosphorylated form of Leo1 binds directly to ß-catenin, promoting the nuclear accumulation of ß-catenin and transactivation of TCF/LEF downstream target genes such as cyclin D1 and c-myc. Importantly, overexpression of PRL-3 in AML cells displayed enhanced sensitivity towards ß-catenin inhibition in vitro and in vivo, suggesting that these cells are addicted to ß-catenin signaling. Altogether, our study revealed a novel regulatory role of PRL-3 in the sustenance of aberrant ß-catenin signaling in AML. PRL-3 may serve as a biomarker to select for the subset of AML patients who are likely to benefit from treatment with ß-catenin inhibitors. Our study presents a new avenue of cancer inhibition driven by PRL-3 overexpression or ß-catenin hyperactivation.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Fatores de Transcrição/genética , beta Catenina/genética , Animais , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Signal ; 43: 21-31, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29196224

RESUMO

Activating mutations in the kinase domain of epidermal growth factor receptor (EGFR) leads to the constitutively active kinase, improves the EGFR stability and promotes malignant transformation in lung adenocarcinoma. Despite the clinical significance, the mechanism by which the increased kinase activity stabilizes the receptor is not completely understood. Using SILAC phosphoproteomic approach, we identify that Mig6 is highly phosphorylated at S256 in EGFR mutants (19del and L858R). Loss of Mig6 contributes to the efficient degradation of EGFR wildtype and mutants in lung cancer cells. Mig6 regulates the recruitment of c-Cbl to EGFR as the ablation of Mig6 enables efficient ubiquitination of the EGFR mutants through elevated recruitment of c-Cbl. We show that the cells with activating mutants of EGFR inactivate Mig6 through phosphorylation at S256. Inactivated Mig6 causes inefficient ubiquitination of EGFR, leading to defective degradation of the receptor thus contributing to the increased stability of the receptor. Taken together, we show a novel function of Mig6 in regulating the ubiquitination of EGFR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Modelos Biológicos , Mutação/genética , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estabilidade Proteica , Reprodutibilidade dos Testes
12.
Breast Cancer Res ; 19(1): 132, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233185

RESUMO

BACKGROUND: Annexin-1 (ANXA1) plays pivotal roles in regulating various physiological processes including inflammation, proliferation and apoptosis, and deregulation of ANXA1 functions has been associated with tumorigenesis and metastasis events in several types of cancer. Though ANXA1 levels correlate with breast cancer disease status and outcome, its distinct functional involvement in breast cancer initiation and progression remains unclear. We hypothesized that ANXA1-responsive kinase signaling alteration and associated phosphorylation signaling underlie early events in breast cancer initiation events and hence profiled ANXA1-dependent phosphorylation changes in mammary gland epithelial cells. METHODS: Quantitative phosphoproteomics analysis of mammary gland epithelial cells derived from ANXA1-heterozygous and ANXA1-deficient mice was carried out using stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry. Kinase and signaling changes underlying ANXA1 perturbations were derived by upstream kinase prediction and integrated network analysis of altered proteins and phosphoproteins. RESULTS: We identified a total of 8110 unique phosphorylation sites, of which 582 phosphorylation sites on 372 proteins had ANXA1-responsive changes. A majority of these phosphorylation changes occurred on proteins associated with cytoskeletal reorganization spanning the focal adhesion, stress fibers, and also the microtubule network proposing new roles for ANXA1 in regulating microtubule dynamics. Comparative analysis of regulated global proteome and phosphoproteome highlighted key differences in translational and post-translational effects of ANXA1, and suggested closely coordinated rewiring of the cell adhesion network. Kinase prediction analysis suggested activity modulation of calmodulin-dependent protein kinase II (CAMK2), P21-activated kinase (PAK), extracellular signal-regulated kinase (ERK), and IκB kinase (IKK) upon loss of ANXA1. Integrative analysis revealed regulation of the WNT and Hippo signaling pathways in ANXA1-deficient mammary epithelial cells, wherein there is downregulation of transcriptional effects of TEA domain family (TEAD) suggestive of ANXA1-responsive transcriptional rewiring. CONCLUSIONS: The phosphoproteome landscape uncovered several novel perspectives for ANXA1 in mammary gland biology and highlighted its involvement in key signaling pathways modulating cell adhesion and migration that could contribute to breast cancer initiation.


Assuntos
Anexina A1/deficiência , Anexina A1/genética , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Animais , Adesão Celular , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos
13.
J Biol Chem ; 292(19): 8092-8100, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28280241

RESUMO

Pathogenic Yersinia bacteria cause a range of human diseases. To modulate and evade host immune systems, these yersiniae inject effector proteins into host macrophages. One such protein, the serine/threonine kinase YopO (YpkA in Yersinia pestis), uses monomeric actin as bait to recruit and phosphorylate host actin polymerization-regulating proteins, including the actin-severing protein gelsolin, to disrupt actin filaments and thus impair phagocytosis. However, the YopO phosphorylation sites on gelsolin and the consequences of YopO-mediated phosphorylation on actin remodeling have yet to be established. Here we determined the effects of YopO-mediated phosphorylation on gelsolin and identified its phosphorylation sites by mass spectrometry. YopO phosphorylated gelsolin in the linker region between gelsolin homology domains G3 and G4, which, in the absence of calcium, are compacted but adopt an open conformation in the presence of calcium, enabling actin binding and severing. Using phosphomimetic and phosphodeletion gelsolin mutants, we found that YopO-mediated phosphorylation partially mimics calcium-dependent activation of gelsolin, potentially contributing to a reduction in filamentous actin and altered actin dynamics in phagocytic cells. In summary, this work represents the first report of the functional outcome of serine/threonine phosphorylation in gelsolin regulation and provides critical insight into how YopO disrupts normal gelsolin function to alter host actin dynamics and thus cripple phagocytosis.


Assuntos
Actinas/química , Proteínas de Bactérias/metabolismo , Cálcio/química , Gelsolina/química , Proteínas Serina-Treonina Quinases/metabolismo , Yersinia/metabolismo , Citoesqueleto de Actina/metabolismo , Sítios de Ligação , Humanos , Macrófagos/microbiologia , Espectrometria de Massas , Simulação de Dinâmica Molecular , Mutação , Fagocitose , Fosforilação , Domínios Proteicos , Pirenos/química , Serina/química , Treonina/química
14.
Sci Rep ; 7: 39998, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051168

RESUMO

Yersinia bacteria cause a range of human diseases, including yersiniosis, Far East scarlet-like fever and the plague. Yersiniae modulate and evade host immune defences through injection of Yersinia outer proteins (Yops) into phagocytic cells. One of the Yops, YopO (also known as YpkA) obstructs phagocytosis through disrupting actin filament regulation processes - inhibiting polymerization-promoting signaling through sequestration of Rac/Rho family GTPases and by using monomeric actin as bait to recruit and phosphorylate host actin-regulating proteins. Here we set out to identify mechanisms of specificity in protein phosphorylation by YopO that would clarify its effects on cytoskeleton disruption. We report the MgADP structure of Yersinia enterocolitica YopO in complex with actin, which reveals its active site architecture. Using a proteome-wide kinase-interacting substrate screening (KISS) method, we identified that YopO phosphorylates a wide range of actin-modulating proteins and located their phosphorylation sites by mass spectrometry. Using artificial substrates we clarified YopO's substrate length requirements and its phosphorylation consensus sequence. These findings provide fresh insight into the mechanism of the YopO kinase and demonstrate that YopO executes a specific strategy targeting actin-modulating proteins, across multiple functionalities, to compete for control of their native phospho-signaling, thus hampering the cytoskeletal processes required for macrophage phagocytosis.


Assuntos
Actinas/química , Difosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas Serina-Treonina Quinases/química , Yersinia enterocolitica , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
15.
PLoS Genet ; 12(9): e1006310, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27631493

RESUMO

The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.


Assuntos
Proteína Quinase CDC2/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Segregação de Cromossomos/genética , Citocinese/genética , Cinetocoros/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/genética
17.
Sci Rep ; 6: 25844, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27180971

RESUMO

Despite efforts in the last decade, signaling aberrations associated with obesity remain poorly understood. To dissect molecular mechanisms that define this complex metabolic disorder, we carried out global phosphoproteomic analysis of white adipose tissue (WAT) from mice fed on low-fat diet (LFD) and high-fat diet (HFD). We quantified phosphorylation levels on 7696 peptides, and found significant differential phosphorylation levels in 282 phosphosites from 191 proteins, including various insulin-responsive proteins and metabolic enzymes involved in lipid homeostasis in response to high-fat feeding. Kinase-substrate prediction and integrated network analysis of the altered phosphoproteins revealed underlying signaling modulations during HFD-induced obesity, and suggested deregulation of lipogenic and lipolytic pathways. Mutation of the differentially-regulated novel phosphosite on cytoplasmic acetyl-coA forming enzyme ACSS2 (S263A) upon HFD-induced obesity led to accumulation of serum triglycerides and reduced insulin-responsive AKT phosphorylation as compared to wild type ACSS2, thus highlighting its role in obesity. Altogether, our study presents a comprehensive map of adipose tissue phosphoproteome in obesity and reveals many previously unknown candidate phosphorylation sites for future functional investigation.


Assuntos
Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Fosfoproteínas/metabolismo , Células 3T3-L1 , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Camundongos , Mutação , Peptídeos/química , Fosfoproteínas/química , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais , Triglicerídeos/metabolismo
18.
Nat Commun ; 7: 10968, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005833

RESUMO

CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação Neoplásica da Expressão Gênica , Granulócitos/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide/genética , Mielopoese/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cromatografia Líquida , Ensaio de Desvio de Mobilidade Eletroforética , Fator Estimulador de Colônias de Granulócitos , Granulócitos/citologia , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Leucemia Mieloide/metabolismo , Leucemia Mieloide Aguda/metabolismo , Espectrometria de Massas , Fatores de Transcrição de p300-CBP/metabolismo
19.
Biochim Biophys Acta ; 1864(6): 715-723, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947243

RESUMO

Despite its critical role in maintaining glucose homeostasis, surprisingly little is known about proinsulin folding in the endoplasmic reticulum. In this study we aimed to understand the chaperones involved in the maturation and degradation of proinsulin. We generated pancreatic beta cell lines expressing FLAG-tagged proinsulin. Several chaperones (including BiP, PDIA6, calnexin, calreticulin, GRP170, Erdj3 and ribophorin II) co-immunoprecipitated with proinsulin suggesting a role for these proteins in folding. To investigate the chaperones responsible for targeting misfolded proinsulin for degradation, we also created a beta cell line expressing FLAG-tagged proinsulin carrying the Akita mutation (Cys96Tyr). All chaperones found to be associated with wild type proinsulin also co-immunoprecipitated with Akita proinsulin. However, one additional protein, namely P58(IPK), specifically precipitated with Akita proinsulin and approximately ten fold more PDIA6, but not other PDI family members, was bound to Akita proinsulin. The latter suggests that PDIA6 may act as a key reductase and target misfolded proinsulin to the ER-degradation pathway. The preferential association of PDIA6 to Akita proinsulin was also confirmed in another beta cell line (ßTC-6). Furthermore, for the first time, a physiologically relevant substrate for PDIA6 has been evidenced. Thus, this study has identified several chaperones/foldases that associated with wild type proinsulin and has also provided a comprehensive interactome for Akita misfolded proinsulin.


Assuntos
Proinsulina/química , Isomerases de Dissulfetos de Proteínas/fisiologia , Dobramento de Proteína , Animais , Linhagem Celular , Camundongos , Mutagênese Sítio-Dirigida , Isomerases de Dissulfetos de Proteínas/química
20.
Cell Stem Cell ; 17(4): 435-47, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387754

RESUMO

ELABELA (ELA) is a peptide hormone required for heart development that signals via the Apelin Receptor (APLNR, APJ). ELA is also abundantly secreted by human embryonic stem cells (hESCs), which do not express APLNR. Here we show that ELA signals in a paracrine fashion in hESCs to maintain self-renewal. ELA inhibition by CRISPR/Cas9-mediated deletion, shRNA, or neutralizing antibodies causes reduced hESC growth, cell death, and loss of pluripotency. Global phosphoproteomic and transcriptomic analyses of ELA-pulsed hESCs show that it activates PI3K/AKT/mTORC1 signaling required for cell survival. ELA promotes hESC cell-cycle progression and protein translation and blocks stress-induced apoptosis. INSULIN and ELA have partially overlapping functions in hESC medium, but only ELA can potentiate the TGFß pathway to prime hESCs toward the endoderm lineage. We propose that ELA, acting through an alternate cell-surface receptor, is an endogenous secreted growth factor in human embryos and hESCs that promotes growth and pluripotency.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Hormônios Peptídicos/metabolismo , Transdução de Sinais , Anticorpos Neutralizantes , Receptores de Apelina , Diferenciação Celular , Linhagem Celular , Autorrenovação Celular , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Comunicação Parácrina , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA