Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2312508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38465829

RESUMO

Sodium foil, promising for high-energy-density batteries, faces reversibility challenges due to its inherent reactivity and unstable solid electrolyte interphase (SEI) layer. In this study, a stable sodium metal battery (SMB) is achieved by tuning the electrolyte solvation structure through the addition of co-solvent 2-methyl tetrahydrofuran (MTHF) to diglyme (Dig). The introduction of cyclic ether-based MTHF results in increased anion incorporation in the solvation structure, even at lower salt concentrations. Specifically, the anion stabilization capabilities of the environmentally sustainable MTHF co-solvent lead to a contact-ion pair-based solvation structure. Time-of-flight mass spectroscopy analysis reveals that a shift toward an anion-dominated solvation structure promotes the formation of a thin and uniform SEI layer. Consequently, employing a NaPF6-based electrolyte with a Dig:MTHF ratio of 50% (v/v) binary solvent yields an average Coulombic efficiency of 99.72% for 300 cycles in Cu||Na cell cycling. Remarkably, at a C/2 cycling rate, Na||Na symmetric cell cycling demonstrates ultra-long-term stability exceeding 7000 h, and full cells with Na0.44MnO2 as a cathode retain 80% of their capacity after 500 cycles. This study systematically examines solvation structure, SEI layer composition, and electrochemical cycling, emphasizing the significance of MTHF-based binary solvent mixtures for high-performance SMBs.

2.
Adv Mater ; 36(9): e2305645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37670536

RESUMO

The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next-generation energy-dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)-based electrolyte systems have demonstrated great success in enabling high-stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic-rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6, LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time-of-flight secondary-ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g-1 and a capacity of 0.5 mAh g-1 in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high-rate, reversible lithium storage, supplying 139 mAh g(LFP) -1 at C/2 (≈0.991 mAh cm-2 , @ 0.61 mA cm-2 ) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).

3.
ACS Appl Mater Interfaces ; 14(40): 45240-45253, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173292

RESUMO

Free-standing electrode (FSE) architectures hold the potential to dramatically increase the gravimetric and volumetric energy density of lithium-ion batteries (LIBs) by eliminating the parasitic dead weight and volume associated with traditional metal foil current collectors. However, current FSE fabrication methods suffer from insufficient mechanical stability, electrochemical performance, or industrial adoptability. Here, we demonstrate a scalable camphene-assisted fabrication method that allows simultaneous casting and templating of FSEs comprising common LIB materials with a performance superior to their foil-cast counterparts. These porous, lightweight, and robust electrodes simultaneously enable enhanced rate performance by improving the mass and ion transport within the percolating conductive carbon pore network and eliminating current collectors for efficient and stable Li+ storage (>1000 cycles in half-cells) at increased gravimetric and areal energy densities. Compared to conventional foil-cast counterparts, the camphene-derived electrodes exhibit ∼1.5× enhanced gravimetric energy density, increased rate capability, and improved capacity retention in coin-cell configurations. A full cell containing both a free-standing anode and cathode was cycled for over 250 cycles with greater than 80% capacity retention at an areal capacity of 0.73 mA h/cm2. This active-material-agnostic electrode fabrication method holds potential to tailor the morphology of flexible, current-collector-free electrodes, thus enabling LIBs to be optimized for high power or high energy density Li+ storage. Furthermore, this platform provides an electrode fabrication method that is applicable to other electrochemical technologies and advanced manufacturing methods.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121300, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512525

RESUMO

Porphyrins play pivotal roles in many crucial biological processes including photosynthesis. However, there is still a knowledge gap in understanding electronic and excited state implications associated with functionalization of the porphyrin ring system. These effects can have electrochemical and spectroscopic signatures that reveal the complex nature of these somewhat minor substitutions, beyond simple inductive or electronic effect correlations. To obtain a deeper insight into the influences of porphyrin functionalization, four free-base, meso-substituted porphyrins: tetraphenyl porphyrin (TPP), tetra(4-hydroxyphenyl) porphyrin (THPP), tetra(4-carboxyphenyl) porphyrin (TCPP), and tetra(4-nitrophenyl) porphyrin (TNPP), were synthesized, characterized, and investigated. The influence of various substituents, (-hydroxy,-carboxy, and -nitro) in the para position of the meso-substituted phenyl moieties were evaluated by spectroelectrochemical techniques (absorption and fluorescence), femtosecond transient absorption spectroscopy, cyclic and differential pulse voltammetry, ultraviolet photoelectron spectroscopy (UPS), and time-dependent density functional theory (TD-DFT). Spectral features were evaluated for the neutral porphyrins and differences observed among the various porphyrins were further explained using rendered frontier molecular orbitals pertaining to the relevant transitions. Electrochemically generated anionic and cationic porphyrin species indicate similar absorbance spectroscopic signatures attributed to a red-shift in the Soret band. Emissive behavior reveals the emergence of one new fluorescence decay pathway for the ionic porphyrin, distinct from the neutral macrocycle. Femtosecond transient absorption spectroscopy analysis provided further analysis of the implications on the excited-state as a function of the para substituent of the free-base meso-substituted tetraphenyl porphyrins. Herein, we provide an in-depth and comprehensive analysis of the electronic and excited state effects associated with systematically varying the induced dipole at the methine bridge of the free-base porphyrin macrocycle and the spectroscopic signatures related to the neutral, anionic, and cationic species of these porphyrins.


Assuntos
Porfirinas , Eletrônica , Íons , Porfirinas/química , Análise Espectral
5.
ACS Appl Mater Interfaces ; 13(8): 9985-9993, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591714

RESUMO

The highly reactive nature and rough surface of Li foil can lead to the uncontrollable formation of Li dendrites when employed as an anode in a lithium metal battery. Thus, it could be of great practical utility to create uniform, electrochemically stable, and "lithiophilic" surfaces to realize homogeneous deposition of Li. Herein, a LiZn alloy layer is deposited on the surface of Li foil by e-beam evaporation. The idea is to introduce a uniform alloy surface to increase the active area and make use of the Zn sites to induce homogeneous nucleation of Li. The results show that the alloy film protected the Li metal anode, allowing for a longer cycling life with a lower deposition overpotential over a pure-Li metal anode in symmetric Li cells. Furthermore, full cells pairing the modified lithium anode with a LiFePO4 cathode showed an incremental increase in Coulombic efficiency compared with pure-Li. The concept of using only an alloy modifying layer by an in-situ e-beam deposition synthesis method offers a potential method for enabling lithium metal anodes for next-generation lithium batteries.

6.
ChemSusChem ; 14(5): 1370-1376, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427393

RESUMO

The dynamic information of lithium-ion battery active materials obtained from coin cell-based in-situ characterizations might not represent the properties of the active material itself because many other factors in the cell could have impacts on the cell performance. To address this problem, a single particle cell was developed to perform the in-situ characterization without the interference of inactive materials in the battery electrode as well as the X-ray-induced damage. In this study, the dynamic morphological and phase changes of selenium-doped germanium (Ge0.9 Se0.1 ) at the single particle level were investigated via synchrotron-based in-situ transmission X-ray microscopy. The results demonstrate the good reversibility of Ge0.9 Se0.1 at high cycling rate that helps understand its good cycling performance and rate capability. This in-situ and operando technique based on a single particle battery cell provides an approach to understanding the dynamic electrochemical processes of battery materials during charging and discharging at the particle level.

7.
ACS Nano ; 14(12): 17142-17150, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33284576

RESUMO

Nickel adds to the capacity of layered oxide cathodes of lithium-ion batteries but comprises their stability. We report a petal-grained Li[Ni0.89Co0.10Sb0.01]O2 cathode that is, nevertheless, stable. The stability originates from the ordering of the nanosized grains in a dense, flower-petal-like array, where the elongated and nearly parallel grains radiate from the center to the surface. The ordering of the grains prevents microcrack generation from abrupt lattice changes of the stressful H2-H3 phase transition. The tight packing of the nanograins is conserved upon cycling, preventing destructive seepage of the electrolytic solution into the particles. The half-cell, cycling between 2.7-4.3 V versus Li/Li+ at a 0.5 C rate retains 95.0% of its initial capacity of 220 mAh g-1 after 100 cycles. The full-cell, cycling with a graphite anode and between 3.0-4.2 V at a 1 C rate, retains 83.9% of its initial capacity after 1000 cycles.

8.
ACS Appl Mater Interfaces ; 12(42): 47574-47579, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985874

RESUMO

To investigate the lithium transport mechanism in micrometer-sized germanium (Ge) particles, in situ focused ion beam-scanning electron microscopy was used to monitor the structural evolution of individual Ge particles during lithiation. Our results show that there are two types of reaction fronts during lithiation, representing the differences of reactions on the surface and in bulk. The cross-sectional SEM images and transmission electron microscopy characterizations show that the interface between amorphous LixGe and Ge has a wedge shape because of the higher Li transport rate on the surface of the particle. The blade-type reaction front is formed at the interface of the amorphous LixGe and crystalline Ge and is attributed to the large strain at the interface.

9.
ACS Nano ; 13(8): 9279-9291, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31390519

RESUMO

We describe here the metal-templated transformation of carbon nitride (C3N4) into nitrogen-containing carbons as anodes for Li-ion batteries (LIBs). Changing the template from the carbon- and nitrogen-immiscible Cu powder to the carbon- and nitrogen-miscible Fe powder yields different carbons; while Fe templating produces graphitized carbons of low (<10%) nitrogen content and moderate pore volume, Cu templating yields high defect-density carbons of high (32-24%) nitrogen content and larger pore volume. The Li+ storage capacity of the high nitrogen content and larger pore volume Cu-templated carbons exceeds that of the more graphitic Fe-templated carbons due to added contribution from Li+ insertion/extraction from pores and defects and to reversible faradaic Li+ reaction with nitrogen atoms. The Cu-templated carbon annealed at 750 °C delivers the highest specific capacity of 900 mAh g-1 at 0.1 A g-1 and 275 mAh g-1 at 20 A g-1, while also achieving a 96% capacity retention after 2000 cycles at 2 A g-1. The fabrication of higher mass loading electrodes (4.5 mg cm-2) provided a maximum areal capacity of 2.6 mAh cm-2 at 0.45 mA cm-2 (0.1 A g-1), comparable to the capacities of commercial LIB cells and favorable compared to other reported carbon materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA