Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 11: 8, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552456

RESUMO

BACKGROUND: Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis. RESULTS: Here we describe an application of SMRT technology to follow the activity of reverse transcriptase enzymes synthesizing cDNA on thousands of single RNA templates simultaneously in real time with single nucleotide turnover resolution using arrays of ZMWs. This method thereby obtains information from the RNA template directly. The analysis of the kinetics of the reverse transcriptase can be used to identify RNA base modifications, shown by example for N6-methyladenine (m6A) in oligonucleotides and in a specific mRNA extracted from total cellular mRNA. Furthermore, the real-time reverse transcriptase dynamics informs about RNA secondary structure and its rearrangements, as demonstrated on a ribosomal RNA and an mRNA template. CONCLUSIONS: Our results highlight the feasibility of studying RNA modifications and RNA structural rearrangements in ZMWs in real time. In addition, they suggest that technology can be developed for direct RNA sequencing provided that the reverse transcriptase is optimized to resolve homonucleotide stretches in RNA.


Assuntos
Nanotecnologia/métodos , RNA Mensageiro/análise , Transcrição Reversa , DNA Complementar/análise , DNA Complementar/genética , Rearranjo Gênico , Cinética , Nanoestruturas/química , Nucleotídeos/química , RNA Mensageiro/química , RNA Mensageiro/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Análise de Sequência de DNA/métodos
2.
Methods Enzymol ; 472: 431-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20580975

RESUMO

Pacific Biosciences has developed a method for real-time sequencing of single DNA molecules (Eid et al., 2009), with intrinsic sequencing rates of several bases per second and read lengths into the kilobase range. Conceptually, this sequencing approach is based on eavesdropping on the activity of DNA polymerase carrying out template-directed DNA polymerization. Performed in a highly parallel operational mode, sequential base additions catalyzed by each polymerase are detected with terminal phosphate-linked, fluorescence-labeled nucleotides. This chapter will first outline the principle of this single-molecule, real-time (SMRT) DNA sequencing method, followed by descriptions of its underlying components and typical sequencing run conditions. Two examples are provided which illustrate that, in addition to the DNA sequence, the dynamics of DNA polymerization from each enzyme molecules is directly accessible: the determination of base-specific kinetic parameters from single-molecule sequencing reads, and the characterization of DNA synthesis rate heterogeneities.


Assuntos
Sequência de Bases , DNA Polimerase Dirigida por DNA/metabolismo , Análise de Sequência de DNA/métodos , Animais , DNA/química , DNA/genética , DNA/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Estrutura Molecular , Nucleotídeos/química , Análise de Sequência de DNA/instrumentação
3.
Science ; 323(5910): 133-8, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19023044

RESUMO

We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Análise de Sequência de DNA/métodos , Sequência de Bases , Sequência Consenso , DNA/biossíntese , DNA Circular/química , DNA de Cadeia Simples/química , Desoxirribonucleotídeos/metabolismo , Enzimas Imobilizadas , Corantes Fluorescentes , Cinética , Nanoestruturas , Espectrometria de Fluorescência
4.
Nucleosides Nucleotides Nucleic Acids ; 27(9): 1072-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18711669

RESUMO

We demonstrate the efficient synthesis of DNA with complete replacement of the four deoxyribonucleoside triphosphate (dNTP) substrates with nucleotides carrying fluorescent labels. A different, spectrally separable fluorescent dye suitable for single molecule fluorescence detection was conjugated to each of the four dNTPs via linkage to the terminal phosphate. Using these modified nucleotides, DNA synthesis by phi 29 DNA polymerase was observed to be processive for products thousands of bases in length, with labeled nucleotide affinities and DNA polymerization rates approaching unmodified dNTP levels. Results presented here show the compatibility of these nucleotides for single-molecule, real-time DNA sequencing applications.


Assuntos
DNA/síntese química , Corantes Fluorescentes/química , Nucleotídeos/química , Didesoxinucleotídeos/química , Cinética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA