Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 52, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576010

RESUMO

The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais de Doenças , Tauopatias/patologia , Proteínas tau/metabolismo , Encéfalo/patologia
2.
Sci Adv ; 9(44): eadi7347, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922348

RESUMO

Prion diseases are characterized by prion protein (PrP) transmissible aggregation and neurodegeneration, which has been linked to oxidative stress. The physiological function of PrP seems related to sequestering of redox-active Cu2+, and Cu2+ dyshomeostasis is observed in prion disease brain. It is unclear whether Cu2+ contributes to PrP aggregation, recently shown to be mediated by PrP condensation. This study indicates that Cu2+ promotes PrP condensation in live cells at the cell surface and in vitro through copartitioning. Molecularly, Cu2+ inhibited PrP ß-structure and hydrophobic residues exposure. Oxidation, induced by H2O2, triggered liquid-to-solid transition of PrP:Cu2+ condensates and promoted amyloid-like PrP aggregation. In cells, overexpression of PrPC initially protected against Cu2+ cytotoxicity but led to PrPC aggregation upon extended copper exposure. Our data suggest that PrP condensates function as a buffer for copper that prevents copper toxicity but can transition into PrP aggregation at prolonged oxidative stress.


Assuntos
Proteínas Priônicas , Príons , Cobre/química , Peróxido de Hidrogênio , Príons/química , Príons/metabolismo
3.
Brain Neurosci Adv ; 7: 23982128231191046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600228

RESUMO

A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (APOE) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human APOE2, APOE3 or APOE4, as well as APOE knock-outs, showed that tau can spread trans-synaptically in all genotypes and that APOE genotype and age do not affect the spread of tau. These data suggest that APOE genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.

4.
J Mol Neurosci ; 73(9-10): 693-712, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606769

RESUMO

The stereotypical progression of Tau pathology during Alzheimer disease has been attributed to trans-neuronal spreading of misfolded Tau proteins, followed by prion-like templated aggregation of Tau. The nature of Tau and the cellular mechanisms of Tau spreading are still under debate. We hypothesized that Tau's propensity for aggregation would correlate with its ability to spread across synapses and propagate pathology. To study the progressive propagation of Tau proteins in brain regions relevant for Alzheimer disease, we used mice expressing near-physiological levels of full-length human Tau protein carrying pro-aggregant (TauΔK280, TauΔK) or anti-aggregant (TauΔK280-PP, TauΔK-PP) mutations in the entorhinal cortex (EC). To enhance Tau expression in the EC, we performed EC injections of adeno-associated virus (AAV) particles encoding TauΔK or TauΔK-PP. The brains of injected and non-injected EC/TauΔK and EC/TauΔK-PP mice were studied by immunohistological and biochemical techniques to detect Tau propagation to dentate gyrus (DG) neurons and Tau-induced pathological changes. Pro- and anti-aggregant mice had comparable low transgene expression (~0.2 times endogenous mouse Tau). They accumulated human Tau at similar rates and only in expressing EC neurons, including their axonal projections of the perforant path and presynaptic terminals in the molecular layer of the DG. Pro-aggregant EC/TauΔK mice showed misfolded Tau and synaptic protein alterations in EC neurons, not observed in anti-aggregant EC/TauΔK-PP mice. Additional AAV-mediated expression of TauΔK or TauΔK-PP in EC/TauΔK or EC/TauΔK-PP mice, respectively, increased the human Tau expression to ~0.65 times endogenous mouse Tau, with comparable spreading of TauΔK and TauΔK-PP throughout the EC. There was a low level of transcellular propagation of Tau protein, without pathological phosphorylation or misfolding, as judged by diagnostic antibodies. Additionally, TauΔK but not TauΔK-PP expression induced hippocampal astrogliosis. Low levels of pro- or anti-aggregant full-length Tau show equivalent distributions in EC neurons, independent of their aggregation propensity. Increasing the expression via AAV induce local Tau misfolding in the EC neurons, synaptotoxicity, and astrogliosis and lead to a low level of detectable trans-neuronal spreading of Tau. This depends on its concentration in the EC, but, contrary to expectations, does not depend on Tau's aggregation propensity/misfolding and does not lead to templated misfolding in recipient neurons.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Tauopatias/metabolismo , Gliose , Hipocampo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
6.
Sci Rep ; 13(1): 3963, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894559

RESUMO

Tau is an intrinsically disordered neuronal protein in the central nervous system. Aggregated Tau is the main component of neurofibrillary tangles observed in Alzheimer's disease. In vitro, Tau aggregation can be triggered by polyanionic co-factors, like RNA or heparin. At different concentration ratios, the same polyanions can induce Tau condensates via liquid-liquid phase separation (LLPS), which over time develop pathological aggregation seeding potential. Data obtained by time resolved Dynamic Light Scattering experiments (trDLS), light and electron microscopy show that intermolecular electrostatic interactions between Tau and the negatively charged drug suramin induce Tau condensation and compete with the interactions driving and stabilizing the formation of Tau:heparin and Tau:RNA coacervates, thus, reducing their potential to induce cellular Tau aggregation. Tau:suramin condensates do not seed Tau aggregation in a HEK cell model for Tau aggregation, even after extended incubation. These observations indicate that electrostatically driven Tau condensation can occur without pathological aggregation when initiated by small anionic molecules. Our results provide a novel avenue for therapeutic intervention of aberrant Tau phase separation, utilizing small anionic compounds.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Suramina/farmacologia , Doença de Alzheimer/metabolismo , Heparina , RNA/metabolismo
7.
Brain Behav Immun ; 110: 245-259, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906076

RESUMO

Remodeling of synapses by microglia is essential for synaptic plasticity in the brain. However, during neuroinflammation and neurodegenerative diseases, microglia can induce excessive synaptic loss, although the precise underlying mechanisms are unknown. To directly observe microglia-synapse interactions under inflammatory conditions, we performed in vivo two-photon time-lapse imaging of microglia-synapse interactions after bacterial lipopolysaccharide administration to model systemic inflammation, or after inoculation of Alzheimer's disease (AD) brain extracts to model disease-associated neuroinflammatory microglial response. Both treatments prolonged microglia-neuron contacts, decreased basal surveillance of synapses and promoted synaptic remodeling in response to synaptic stress induced by focal single-synapse photodamage. Spine elimination correlated with the expression of microglial complement system/phagocytic proteins and the occurrence of synaptic filopodia. Microglia were observed contacting spines, then stretching and phagocytosing spine head filopodia. Thus, in response to inflammatory stimuli microglia exacerbated spine remodeling through prolonged microglial contact and elimination of spines 'tagged' by synaptic filopodia.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Microglia/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/metabolismo , Sinapses/metabolismo , Inflamação/metabolismo
8.
Brain Res Bull ; 194: 105-117, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690162

RESUMO

Biomolecular condensation of proteins contributes to the organization of the cytoplasm and nucleoplasm. A number of condensation processes appear to be directly involved in regulating the structure, function and dynamics of the cytoskeleton. Liquid-liquid phase separation of cytoskeleton proteins, together with polymerization modulators, promotes cytoskeletal fiber nucleation and branching. Furthermore, the attachment of protein condensates to the cytoskeleton can contribute to cytoskeleton stability and organization, regulate transport, create patterns of functional reaction containers, and connect the cytoskeleton with membranes. Surface-bound condensates can exert and buffer mechanical forces that give stability and flexibility to the cytoskeleton, thus, may play a large role in cell biology. In this review, we introduce the concept and role of cellular biomolecular condensation, explain its special function on cytoskeletal fiber surfaces, and point out potential definition and experimental caveats. We review the current literature on protein condensation processes related to the actin, tubulin, and intermediate filament cytoskeleton, and discuss some of them in the context of neurobiology. In summary, we provide an overview about biomolecular condensation in relation to cytoskeleton structure and function, which offers a base for the exploration and interpretation of cytoskeletal condensates in neurobiology.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Proteínas do Citoesqueleto , Actinas/metabolismo , Citoplasma/metabolismo , Citoesqueleto de Actina/metabolismo
9.
Trends Neurosci ; 46(1): 32-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428191

RESUMO

The heterogeneity of the endoplasmic reticulum (ER) makes it a versatile platform for a broad range of homeostatic processes, ranging from calcium regulation to synthesis and trafficking of proteins and lipids. It is not surprising that neurons use this organelle to fine-tune synaptic properties and thereby provide specificity to synaptic inputs. In this review, we discuss the mechanisms that enable activity-dependent ER recruitment into dendritic spines, with a focus on molecular mechanisms that mediate transport and retention of the ER in spines. The role of calcium signaling in spine ER, synaptopodin 'tagging' of active synapses, and the formation of the spine apparatus (SA) are highlighted. Finally, we discuss the role of liquid-liquid phase separation as a possible driving force in these processes.


Assuntos
Retículo Endoplasmático , Hipocampo , Humanos , Hipocampo/fisiologia , Neurônios/metabolismo , Espinhas Dendríticas/metabolismo , Sinapses/fisiologia , Cálcio/metabolismo
10.
Methods Mol Biol ; 2551: 95-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310199

RESUMO

Tau, a soluble and predominantly neuronal protein, is best known for its microtubule (MT)-binding function in the cytosol, where it decisively contributes to stability as well as modulation of MT dynamics. In Alzheimer's disease and other tauopathies, Tau is altered into forming intracellular neurofibrillary tangles; additionally, also a mislocalization from the cytosol to the nucleus has been observed where interactions of Tau with the nucleus become possible. Using surface plasmon resonance (SPR), it was recently shown that Tau can directly interact with certain nucleoporins (e.g., Nup98), components of the nuclear pore complex (NPC). The NPC constitutes large regulated pores in the nuclear envelope that facilitate the bidirectional exchange of proteins, nucleic acids, and other biomolecules between the inner section of the nucleus and the cytosol, the nucleocytoplasmic transport. The mechanism of Tau/Nup interactions is as yet unknown, and a systematic interaction analysis of Tau with different Nups can be of high value to decipher the molecular binding mechanism of Tau to Nups. SPR is a useful tool to analyze binding affinities and kinetic parameters in a label-free environment. While one interaction partner is immobilized on a sensor chip, the second is supplied within a constant flow of buffer. Binding of mobile molecules to immobilized ones changes the refractive index of the medium close to the sensor surface with the signal being proportional to the bound mass. In this chapter, we describe the application of the SPR technique for the investigation of Tau binding to nucleoporins.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Ressonância de Plasmônio de Superfície , Transporte Ativo do Núcleo Celular/fisiologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas/química , Análise Espectral , Ressonância de Plasmônio de Superfície/métodos , Proteínas tau/metabolismo
11.
Methods Mol Biol ; 2551: 225-243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310206

RESUMO

Tau is an intrinsically disordered protein that binds and stabilizes axonal microtubules (MTs) in neurons of the central nervous system. The binding of Tau to MTs is mediated by its repeat domain and flanking proline-rich domains. The positively charged (basic) C-terminal half of Tau also mediates the assembly Tau into fibrillar aggregates in Alzheimer's disease (AD) and tauopathy brains. In recent years, another assembly form of Tau has been identified: Tau can undergo liquid-liquid phase separation (LLPS), which leads to its condensation into liquid-dense phases, either by complex coacervation with polyanions like heparin or RNA or through "self-coacervation" at high Tau concentrations. Condensation of Tau in the absence of polyanions can be enhanced by the presence of molecular crowding agents in a dilute Tau solution. In vitro experiments using recombinant purified Tau are helpful to study the physicochemical determinants of Tau LLPS, which can then be extrapolated into the cellular context. Tau condensation is a new aspect of Tau biology that may play a role for the initiation of Tau aggregation, but also for its physiological function(s), for example, the binding to microtubules. Here we describe how to study the condensation of Tau in vitro using light microscopy, including fluorescence recovery after photobleaching (FRAP), to assess the shape and molecular diffusion in the condensates, a proxy for the degree of condensate percolation. We also describe turbidity measurements of condensate-containing solutions to assess the overall amount of LLPS and time-resolved dynamic light scattering (trDLS) to study the formation and size of Tau condensates.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Microscopia , Difusão Dinâmica da Luz , Doença de Alzheimer/metabolismo
12.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408855

RESUMO

Tau is a neuronal protein that stabilizes axonal microtubules (MTs) in the central nervous system. In Alzheimer's disease (AD) and other tauopathies, phosphorylated Tau accumulates in intracellular aggregates, a pathological hallmark of these diseases. However, the chronological order of pathological changes in Tau prior to its cytosolic aggregation remains unresolved. These include its phosphorylation and detachment from MTs, mislocalization into the somatodendritic compartment, and oligomerization in the cytosol. Recently, we showed that Tau can interact with phenylalanine-glycine (FG)-rich nucleoporins (Nups), including Nup98, that form a diffusion barrier inside nuclear pore complexes (NPCs), leading to defects in nucleocytoplasmic transport. Here, we used surface plasmon resonance (SPR) and bio-layer interferometry (BLI) to investigate the molecular details of Tau:Nup98 interactions and determined how Tau phosphorylation and oligomerization impact the interactions. Importantly, phosphorylation, but not acetylation, strongly facilitates the accumulation of Tau with Nup98. Oligomerization, however, seems to inhibit Tau:Nup98 interactions, suggesting that Tau-FG Nup interactions occur prior to oligomerization. Overall, these results provide fundamental insights into the molecular mechanisms of Tau-FG Nup interactions within NPCs, which might explain how stress-and disease-associated posttranslational modifications (PTMs) may lead to Tau-induced nucleocytoplasmic transport (NCT) failure. Intervention strategies that could rescue Tau-induced NCT failure in AD and tauopathies will be further discussed.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Tauopatias , Transporte Ativo do Núcleo Celular , Humanos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Tauopatias/metabolismo , Proteínas tau/metabolismo
13.
EMBO J ; 41(11): e108882, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298090

RESUMO

Biomolecular condensation of the neuronal microtubule-associated protein Tau (MAPT) can be induced by coacervation with polyanions like RNA, or by molecular crowding. Tau condensates have been linked to both functional microtubule binding and pathological aggregation in neurodegenerative diseases. We find that molecular crowding and coacervation with RNA, two conditions likely coexisting in the cytosol, synergize to enable Tau condensation at physiological buffer conditions and to produce condensates with a strong affinity to charged surfaces. During condensate-mediated microtubule polymerization, their synergy enhances bundling and spatial arrangement of microtubules. We further show that different Tau condensates efficiently induce pathological Tau aggregates in cells, including accumulations at the nuclear envelope that correlate with nucleocytoplasmic transport deficits. Fluorescent lifetime imaging reveals different molecular packing densities of Tau in cellular accumulations and a condensate-like density for nuclear-envelope Tau. These findings suggest that a complex interplay between interaction partners, post-translational modifications, and molecular crowding regulates the formation and function of Tau condensates. Conditions leading to prolonged existence of Tau condensates may induce the formation of seeding-competent Tau and lead to distinct cellular Tau accumulations.


Assuntos
Doenças Neurodegenerativas , RNA , Humanos , Microtúbulos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Ligação Proteica , RNA/metabolismo , Proteínas tau/metabolismo
14.
Nat Commun ; 12(1): 2238, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854069

RESUMO

Disrupted homeostasis of the microtubule binding protein tau is a shared feature of a set of neurodegenerative disorders known as tauopathies. Acetylation of soluble tau is an early pathological event in neurodegeneration. In this work, we find that a large fraction of neuronal tau is degraded by chaperone-mediated autophagy (CMA) whereas, upon acetylation, tau is preferentially degraded by macroautophagy and endosomal microautophagy. Rerouting of acetylated tau to these other autophagic pathways originates, in part, from the inhibitory effect that acetylated tau exerts on CMA and results in its extracellular release. In fact, experimental blockage of CMA enhances cell-to-cell propagation of pathogenic tau in a mouse model of tauopathy. Furthermore, analysis of lysosomes isolated from brains of patients with tauopathies demonstrates similar molecular mechanisms leading to CMA dysfunction. This study reveals that CMA failure in tauopathy brains alters tau homeostasis and could contribute to aggravate disease progression.


Assuntos
Autofagia Mediada por Chaperonas , Tauopatias/metabolismo , Proteínas tau/metabolismo , Acetilação , Animais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Tauopatias/genética , Tauopatias/patologia , Tauopatias/fisiopatologia , Proteínas tau/genética
15.
Curr Opin Neurobiol ; 69: 131-138, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892381

RESUMO

The functions of the neuronal microtubule-associated protein Tau in the central nervous system are regulated by manifold posttranslational modifications at more than 50 sites. Tau in healthy neurons carries multiple phosphate groups, mostly in its microtubule assembly domain. Elevated phosphorylation and aggregation of Tau are widely considered pathological hallmarks in Alzheimer's disease (AD) and other tauopathies, triggering the quest for Tau posttranslational modifications in the disease context. However, the phosphorylation patterns of physiological and pathological Tau are surprisingly similar and heterogenous, making it difficult to identify specific modifications as therapeutic targets and biomarkers for AD. We present a concise summary of - and view on - important previous and recent advances in Tau phosphorylation analysis in the context of AD.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo
16.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741591

RESUMO

Neuronal tau reduction confers resilience against ß-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.


Assuntos
Doença de Alzheimer , Fatores de Transcrição , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Camundongos , Placa Amiloide/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Proteínas tau/genética , Proteínas tau/metabolismo
17.
iScience ; 24(2): 102058, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554064

RESUMO

It has been suggested that aberrant activation of glycogen synthase kinase-3-beta (GSK-3ß) can trigger abnormal tau hyperphosphorylation and aggregation, which ultimately leads to neuronal/synaptic damage and impaired cognition in Alzheimer disease (AD). We examined if isoform-selective partial reduction of GSK-3ß can decrease pathological tau changes, including hyperphosphorylation, aggregation, and spreading, in mice with localized human wild-type tau (hTau) expression in the brain. We used adeno-associated viruses (AAVs) to express hTau locally in the entorhinal cortex of wild-type and GSK-3ß hemi-knockout (GSK-3ß-HK) mice. GSK-3ß-HK mice had significantly less accumulation of hyperphosphorylated tau in synapses and showed a significant decrease of tau protein spread between neurons. In primary neuronal cultures from GSK-3ß-HK mice, the aggregation of exogenous FTD-mutant tau was also significantly reduced. These results show that a partial decrease of GSK-3ß significantly represses tau-initiated neurodegenerative changes in the brain, and therefore is a promising therapeutic target for AD and other tauopathies.

18.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619090

RESUMO

Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas , Multimerização Proteica , Antígeno-1 Intracelular de Células T/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Recombinantes , Proteínas tau/química
19.
Front Neurol ; 11: 1056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101165

RESUMO

Tau is a cytosolic microtubule binding protein that is highly abundant in the axons of the central nervous system. However, alternative functions of tau also in other cellular compartments are suggested, for example, in the nucleus, where interactions of tau with specific nuclear entities such as DNA, the nucleolus, and the nuclear envelope have been reported. We would like to review the current knowledge about tau-nucleus interactions and lay out possible neurotoxic mechanisms that are based on the (pathological) interactions of tau with the nucleus.

20.
Nature ; 580(7803): 381-385, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296178

RESUMO

The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies-including Alzheimer's disease, frontotemporal dementia and chronic traumatic encephalopathy1. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity2. This observation and complementary experimental studies3,4 have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular , Endocitose , Feminino , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA