Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Med Sci ; 19(7): 1138-1146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919818

RESUMO

Indoxyl sulfate (IS) and p-cresyl sulfate (PCS), protein-bound uremic toxins, can induce oxidative stress and cause renal disease progression. However, the different cytotoxic effects on renal cells between IS and PCS are not stated. Due to uremic toxins are generally found in CKD patients, the mechanisms of uremic toxins-induced renal injury are required to study. Curcumin has anti-oxidant, anti-inflammatory and anti-apoptotic effects which may be potential used to protect against renal damage. In contrast, curcumin also exert cytotoxic effects on various cells. In addition, curcumin may reduce or enhance cytotoxicity combined with different chemicals treatments. However, whether curcumin may influence uremic toxins-induced renal injury is unclear. The goal of this study is to compare the different cytotoxic effects on renal cells between IS and PCS treatment, as well as the synergistic or antagonistic effects by combination treatments with curcumin and PCS. Our experimental result shows the PCS exerts a stronger antiproliferative effect on renal tubular cells than IS treatment. In addition, our study firstly demonstrates that curcumin enhances PCS-induced cell cytotoxicity through caspase-dependent apoptotic pathway and cell cycle alteration.


Assuntos
Curcumina , Insuficiência Renal Crônica , Cresóis/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Indicã/metabolismo , Indicã/toxicidade , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Sulfatos , Ésteres do Ácido Sulfúrico/metabolismo , Ésteres do Ácido Sulfúrico/toxicidade
2.
Cells ; 10(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34831283

RESUMO

Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.


Assuntos
Interleucina-1/metabolismo , Nefrite Intersticial/metabolismo , Salicilanilidas/farmacologia , Transdução de Sinais , Animais , Linhagem Celular , Citocinas/urina , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Peróxido de Hidrogênio , Inflamassomos/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrite Intersticial/complicações , Nefrite Intersticial/patologia , Nefrite Intersticial/urina , Fator de Transcrição STAT3/metabolismo , Obstrução Ureteral/complicações
3.
Food Sci Nutr ; 9(6): 3308-3316, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136195

RESUMO

Vitamin C and vitamin E are well-known antioxidant vitamins, both of which are also applied as adjunct treatments for cancer therapy. Methotrexate (MTX) is a clinical drug that is used widely for rheumatoid arthritis and cancer treatment. Human glioblastoma multiforme (GBM) is an aggressive malignant brain tumor; the mean survival time for GBM patients is <2 years with traditional therapies. Developing and investigating novel treatments are important for clinical GBM therapy. Therefore, the aim of this study was to investigate whether combined treatment with vitamin C/E and MTX can display anticancer activities on GBM. Our studies showed that MTX displays anticancer effects on GBM in a dose-dependent manner, while vitamins C and E are not cytotoxic to glioblastoma. Importantly, this study showed that vitamins C and E can promote anticancer effects on low-concentration methotrexate-treated glioblastoma. Additionally, this study suggested that MTX alone or combined with vitamins C/E inhibits GBM cell growth via the caspase-3 death pathway.

4.
Int J Med Sci ; 17(8): 1015-1022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410830

RESUMO

Guava extracts purified from leaf and bark have many bio-active molecules with anti-cancer activities. In addition, lycopene-rich extracts obtained from red guava fruit can induce apoptosis in estrogen receptor-positive breast cancers. Triple-negative breast cancer (TNBC) lacks estrogen receptors, progesterone receptors and human epidermal growth factor receptor 2 (HER2) and, therefore, hormone therapy and targeted therapy are not used in the clinic. The purpose of this study was to determine whether red guava fruit extracts can affect the proliferation of TNBC cells. In this study, cell viability was determined by using the MTT assay. Apoptosis and necrosis were analyzed using flow cytometry. Cleaved caspase-3 and PARP were analyzed by western blotting. We found that red guava extracts can, through caspase-3 activation and PARP cleavage signaling, induce apoptotic and necrotic death in TNBC cells. Our results thus show the therapeutic benefit of red guava extracts as a potential cancer treatment for TNBC in combination with doxorubicin or targeted therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doxorrubicina/farmacologia , Extratos Vegetais/farmacologia , Psidium/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
5.
Int J Med Sci ; 16(4): 494-500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31171899

RESUMO

Aim: Sulfasalazine (SSZ) displayed anti-cancer activities. Vitamin E succinate (VES) could inhibit cell growth in various cancer cells. However, chemical therapies were often not useful for triple-negative breast cancer cells (TNBCs) treatment. Here, this study investigated the anti-cancer effects and the mechanisms on TNBCs under combination treatment with SSZ and VES. Methods: Cell viability was analyzed by using the MTT assay. The H2O2 levels were determined by using lucigenin-amplified chemiluminescence method. In addition, caspase and MAPs signals were studied by using western blotting. Results: Low-dose VES antagonized the SSZ-induced cytotoxicity effects while high-dose VES promoted the SSZ-induced cytotoxicity effects on TNBCs. In addition, SSZ alone treatment activated both caspase-3 and ERK signals, however, VES alone treatment only activated JNK signals. On the other hand, activation of caspase-3, JNK, and ERK were found in SSZ plus VES-treated cells. Conclusion: Combined SSZ and VES has synergistic or antagonistic cytotoxic effects depending on VES concentration. In addition, different cytotoxic signals are induced on SSZ-treated, VES-treated and SSZ plus VES-treated cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sulfassalazina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , alfa-Tocoferol/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peróxido de Hidrogênio/isolamento & purificação , MAP Quinase Quinase 4/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Sci Rep ; 9(1): 3207, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824757

RESUMO

p-Cresyl sulfate (pCS), a uremic toxin, can cause renal damage and dysfunction. Studies suggest that renal dysfunction increases the prevalence of renal cancer. However, the effect of pCS on the proliferation and migration of renal cancer is unclear. Clear cell renal cell carcinoma (ccRCC) expresses mutant von Hippel-Lindau gene and is difficult to treat. Hypoxia-inducible factor-1α and 2-α (HIF-1α and HIF-2α) as well as microRNA-21 (miR-21) can regulate the proliferation and migration of ccRCC cells. However, the association between HIF-α and miR-21 in ccRCC remains unclear. Therefore, the effects of pCS on ccRCC cells were investigated for HIF-α and miR-21 signals. Our results showed that pCS induced overexpression of HIF-1α and promoted the proliferation and regulated epithelial-mesenchymal transition-related proteins, including E-cadherin, fibronectin, twist and vimentin in ccRCC cells. pCS treatment increased miR-21 expression. Specifically, inhibition of miR-21 blocked pCS-induced proliferation and migration. Taken together, the present results demonstrate that pCS directly induced the proliferation and migration of ccRCC cells through mechanisms involving miR-21/HIF-1α signaling pathways.


Assuntos
Carcinoma de Células Renais/patologia , Movimento Celular/efeitos dos fármacos , Cresóis/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/patologia , MicroRNAs/metabolismo , Transdução de Sinais , Ésteres do Ácido Sulfúrico/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/genética , MicroRNAs/genética , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
Oncol Rep ; 41(3): 2060-2066, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30628707

RESUMO

Triple­negative breast cancers (TNBCs) lack the estrogen receptor, progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Therefore, hormone or targeted therapies are not effective in the treatment of TNBC and thus the development of novel therapeutic strategies is crucial. Methotrexate (MTX), a folate antagonist, has been used in the treatment of various types of cancer; however, the anticancer effects of MTX treatment on breast cancer have thus far been ineffective. Vitamin E variants and derivatives have been applied for cancer therapy. Previous studies have indicated that vitamin E variants and derivatives exert distinct anticancer effects on different types of cancer. However, whether MTX plus vitamin E variants or its derivatives can inhibit TNBC remains unclear. The aim of the present study was to examine the anticancer effects and mechanisms of action of MTX in combination with vitamin E variants (α­tocopherol) and derivatives (α­tocopherol succinate) on TNBC. In the present study, MTT assay and western blot analysis were used to determine the cell survival rates and protein levels. The results demonstrated that combination treatment with MTX and α­tocopherol suppressed TNBC cell proliferation. In addition, various concentrations of MTX exerted distinct cytotoxic effects on α­tocopherol succinate­treated cells. Furthermore, high­dose MTX enhanced α­tocopherol succinate­induced anticancer activity; however, low­dose MTX inhibited α­tocopherol succinate­induced anticancer activity. The present study also demonstrated that caspase­3 activation and poly(adenosine diphosphate­ribose) polymerase cleavage were observed in the α­tocopherol succinate/MTX­treated cells. In conclusion, the findings of the present study demonstrated that high­dose MTX enhanced anticancer activity in α­TOS­treated TNBC, while low­dose MTX reduced anticancer activity in α­TOS­treated TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Metotrexato/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , alfa-Tocoferol/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Metotrexato/uso terapêutico , alfa-Tocoferol/uso terapêutico
8.
Mol Med Rep ; 17(4): 5544-5551, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393462

RESUMO

Acetaminophen (APAP) is an analgesic and antipyretic agent primarily used in the clinical setting. However, high doses of APAP can cause oxidative stress. Guavas have been reported to provide anti­inflammatory, anti­microbial, anti­oxidative and anti­diarrheal functions. In addition, guavas have been reported to prevent renal damage due to progression of diabetes mellitus. Therefore, the aim of the present study was to investigate whether guavas can reduce APAP­induced renal cell damage. In the present study, extracts from guavas were obtained and added to APAP­treated renal tubular endothelial cells. The present results demonstrated that APAP induces cytotoxicity in renal tubular endothelial cells, while guava extracts inhibited this cytotoxicity. In addition, the study demonstrated that the protective effects of guava extracts against APAP­induced cytotoxicity may be associated with inhibition of oxidative stress and caspase­3 activation.


Assuntos
Acetaminofen/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Frutas/química , Túbulos Renais/citologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Psidium/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Ratos
9.
Mol Med Rep ; 17(1): 31-36, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115579

RESUMO

Aristolochic acid (AA) is a component identified in traditional Chinese remedies for the treatment of arthritic pain, coughs and gastrointestinal symptoms. However, previous studies have indicated that AA can induce oxidative stress in renal cells leading to nephropathy. α­tocopherol exists in numerous types of food, such as nuts, and belongs to the vitamin E isoform family. It possesses antioxidant activities and has been used previously for clinical applications. Therefore, the aim of the present study was to determine whether α­tocopherol could reduce AA­induced oxidative stress and renal cell cytotoxicity, determined by cell survival rate, reactive oxygen species detection and apoptotic features. The results indicated that AA markedly induced H2O2 levels and caspase­3 activity in renal tubular epithelial cells. Notably, the presence of α­tocopherol inhibited AA­induced H2O2 and caspase­3 activity. The present study demonstrated that antioxidant mechanisms of α­tocopherol may be involved in the increased survival rates from AA­induced cell injury.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Aristolóquicos/efeitos adversos , Caspase 3/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túbulos Renais/citologia , Estresse Oxidativo/efeitos dos fármacos , Vitamina E/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacologia
10.
Oncol Rep ; 37(4): 2177-2184, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28259996

RESUMO

Methotrexate (MTX) is widely used as both an anticancer and anti-rheumatoid arthritis drug. Although MTX has been used to inhibit the growth of many cancer cells, it cannot effectively inhibit growth of triple-negative breast cancer cells (TNBC cells). Vitamin C is an antioxidant that can prevent oxidative stress. In addition, vitamin C has been applied as adjunct treatment for growth inhibition of cancer cells. Recent studies indicated that combined treatment with vitamin C and MTX may inhibit MCF-7 and MDA-MB-231 breast cancer cell growth through G2/M elongation. However, the mechanisms remain unknown. The aim of the present study was to determine whether combined treatment with low-dose vitamin C and MTX inhibits TNBC cell growth and to investigate the mechanisms of vitamin C/MTX-induced cytotoxicity. Neither low-dose vitamin C alone nor MTX alone inhibited TNBC cell growth. However, combined low-dose vitamin C and MTX had synergistic anti-proliferative/cytotoxic effects on TNBC cells. In addition, co-treatment increased H2O2 levels and activated both caspase-3 and p38 cell death pathways.


Assuntos
Ácido Ascórbico/farmacologia , Caspase 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Metotrexato/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
11.
Sci Rep ; 7: 41123, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117341

RESUMO

We have previously showed that IL-1ß is involved in the pathogenesis of both spontaneously occurring and passively induced IgA nephropathy (IgAN) models. However, the exact causal-relationship between NLRP3 inflammasome and the pathogenesis of IgAN remains unknown. In the present study, we showed that [1] IgA immune complexes (ICs) activated NLRP3 inflammasome in macrophages involving disruption of mitochondrial integrity and induction of mitochondrial ROS, bone marrow-derived dendritic cells (BMDCs) and renal intrinsic cells; [2] knockout of NLRP3 inhibited IgA ICs-mediated activation of BMDCs and T cells; and [3] knockout of NLRP3 or a kidney-targeting delivery of shRNA of NLRP3 improved renal function and renal injury in a mouse IgAN model. These results strongly suggest that NLRP3 inflammasome serves as a key player in the pathogenesis of IgAN partly through activation of T cells and mitochondrial ROS production and that a local, kidney-targeting suppression of NLRP3 be a therapeutic strategy for IgAN.


Assuntos
Glomerulonefrite por IGA/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Feminino , Glomerulonefrite por IGA/imunologia , Rim/imunologia , Rim/metabolismo , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Mol Med Rep ; 14(6): 5155-5163, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27840979

RESUMO

Bacillus amyloliquefaciens JN68, which has been discussed with regards to its antimicrobial activities, was successfully isolated from healthy chicken intestines in the present study. Using the spot-on-the-lawn antagonism method, the preliminary study indicated that a suspension culture of the B. amyloliquefaciens JN68 strain can inhibit the growth of Aspergillus niger and Penicillium pinophilum. Furthermore, the cyclic lipopeptides (CLPs) produced by the B. amyloliquefaciens JN68 strain were further purified through acid precipitation and Bond Elut®C18 chromatography, and their structures were identified using the liquid chromatography­electrospray ionization­mass spectrometry (MS)/MS method. Purified CLPs exerted broad spectrum antimicrobial activities on various pathogenic and foodborne bacteria and fungi, as determined using the agar well diffusion method. Listeria monocytogenes can induce listeriosis, which is associated with a high mortality rate. Methicillin­resistant Staphylococcus aureus (MRSA) is a major pathogenic bacteria that causes nosocomial infections. Therefore, L. monocytogenes and MRSA are currently of great concern. The present study aimed to determine whether B. amyloliquefaciens JN68 extracts could inhibit L. monocytogenes and MRSA. The results indicated that extracts of B. amyloliquefaciens JN68 have CLP components, and can successfully inhibit the growth of L. monocytogenes and MRSA.


Assuntos
Anti-Infecciosos/farmacologia , Bacillus amyloliquefaciens/metabolismo , Lipopeptídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibiose , Bacillus amyloliquefaciens/isolamento & purificação , Galinhas , Intestinos/microbiologia , Lipopeptídeos/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação
13.
Mol Med Rep ; 13(6): 5372-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27109695

RESUMO

Renal fibroblast proliferation is key in renal fibrosis and chronic kidney disease. Transforming growth factor-ß1 (TGF-ß1) has been demonstrated to be an important factor that induces cell proliferation in renal fibroblasts. Epidermal growth factor receptor (EGFR) is also recognized as a factor promoting renal fibroblast proliferation. In addition, mitogen­activated protein kinase signaling pathways are associated with TGF­ß1­ and EGFR­induced cell proliferation. Gefitinib, an EGFR tyrosine kinase inhibitor, is predominantly used as an anti­tumor therapeutic agent in clinical therapeutic strategies. However, gefitinib has been suggested to exert anti­proliferative effects on renal fibroblasts, however, high­dose gefitinib may result in serious side effects. The present study aims to determine whether low­dose gefitinib reduces gefitinib­induced side effects and maintains the anti­proliferative effects on renal fibroblasts. TGF­ß1 promotes cell proliferation in renal fibroblasts, and the current study demonstrates that low­dose gefitinib treatment exhibits anti­proliferative effects similar to those of high­dose gefitinib treatment. Thus, although high­dose gefitinib is a conventional anti­tumor drug, low­dose gefitinib may be of use in renal fibrosis treatment. Furthermore, the present study demonstrates that a combined treatment with low-dose gefitinib and vitamin E has synergistic effects that reduce TGF­ß1­induced fibroblast proliferation, cell-cycle arrest and the ERK phosphorylation pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Quinazolinas/farmacologia , Fator de Crescimento Transformador beta1/biossíntese , Vitamina E/farmacologia , Animais , Linhagem Celular , Sinergismo Farmacológico , Fibroblastos/citologia , Gefitinibe , Rim/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinazolinas/agonistas , Ratos , Vitamina E/agonistas
14.
Mol Med Rep ; 12(4): 5501-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238149

RESUMO

Retinoic acid (RA), vitamin D and 12-O­tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High­dose ascorbic acid (>100 µM) induces HL­60 cell apoptosis and induces a small fraction of HL­60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti­oxidative stress function. Oxidative stress is required for HL­60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL­60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low­dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL­60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low­dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL­60 cell differentiation following treatment with TPA.


Assuntos
Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Macrófagos , Fosforilação
15.
Mol Med Rep ; 12(4): 6086-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239057

RESUMO

Aristolochic acid (AA) is a component of Chinese medicinal herbs, including asarum and aristolochia and has been used in Traditional Chinese Medicine for a long time. Recent studies found that AA has a cytotoxic effect resulting in nephropathy. These studies indicated that AA­induced cytotoxicity is associated with increases in oxidative stress and caspase­3 activation. The present study further demonstrated that AA mainly elevates the H2O2 ratio, leading to increases in oxidative stress. Furthermore, the results indicated that AA induces cell death can via caspase­dependent and ­independent pathways. It is desirable to identify means of inhibiting AA­induced renal damage; therefore, the present study applied an anti­oxidative nutrient, vitamin C, to test whether it can be employed to reduce AA­induced cell cytotoxicity. The results showed that vitamin C decreased AA­induced H2O2 levels, caspase­3 activity and cytotoxicity in renal tubular cells. In conclusion, the present study was the first to demonstrate that AA­induced increases of the H2O2 ratio resulted in renal tubular cell death via caspase­dependent and ­independent pathways, and that vitamin C can decrease AA­induced increases in H2O2 levels and caspase­3 activity to attenuate AA­induced cell cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Aristolóquicos/toxicidade , Ácido Ascórbico/farmacologia , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Estresse Oxidativo , Animais , Aristolochia/química , Asarum/química , Caspase 3/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/toxicidade , Peróxido de Hidrogênio/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/patologia , Ratos
16.
Int J Mol Med ; 36(2): 485-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26096646

RESUMO

Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. Generally, the therapeutic dose of APAP is clinically safe, however, high doses of APAP can cause acute liver and kidney injury. Therefore, the majority of previous studies have focussed on elucidating the mechanisms of APAP-induced hepatotoxicity and nephrotoxicity, in addition to examining ways to treat these conditions in clinical cases. However, few studies have reported APAP-induced intoxication in human stem cells. Stem cells are important in cell proliferation, differentiation and repair during human development, particularly during fetal and child development. At present, whether APAP causes cytotoxic effects in human stem cells remains to be elucidated, therefore, the present study aimed to investigate the cellular effects of APAP treatment in human stem cells. The results of the present study revealed that high-dose APAP induced more marked cytotoxic effects in human mesenchymal stem cells (hMSCs) than in renal tubular cells. In addition, increased levels of hydrogen peroxide (H2O2), phosphorylation of c-Jun N-terminal kinase and p38, and activation of caspase-9/-3 cascade were observed in the APAP-treated hMSCs. By contrast, antioxidants, including vitamin C reduced APAP-induced augmentations in H2O2 levels, but did not inhibit the APAP-induced cytotoxic effects in the hMSCs. These results suggested that high doses of APAP may cause serious damage towards hMSCs.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Morte Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Oncol Rep ; 32(3): 1057-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969544

RESUMO

Methotrexate (MTX) has been widely used for rheumatoid arthritis therapy for a long time. MTX is also used as an anticancer drug for various tumors. However, many studies have shown that high-dose MTX treatment for cancer therapy may cause liver and renal damage. Alhough the mechanisms involved in MTX-induced liver and renal damage require further research, many studies have indicated that MTX-induced cytotoxicity is associated with increases in oxidative stress and caspase activation. In order to reduce MTX-induced side-effects and increase anticancer efficiency, currently, combination treatments of low-dose MTX and other anticancer drugs are considered and applied for various tumor treatments. The present study showed that MTX induces increases in H2O2 levels and caspase-9/-3 activation leading to cell death in hepatocellular carcinoma Hep3B cells. Importantly, this study is the first to demonstrate that vitamin C can efficiently aid low-dose MTX in inducing cell death in Hep3B cells. Therefore, the present study provides a possible powerful therapeutic method for tumors using a combined treatment of vitamin C and low-dose MTX.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metotrexato/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Oxigênio/metabolismo
18.
Mol Med Rep ; 9(6): 2077-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682227

RESUMO

Acetaminophen (APAP), is a safe analgesic and antipyretic drug at therapeutic dose, and is widely used in the clinic. However, high doses of APAP can induce hepatotoxicity and nephrotoxicity. Most studies have focused on high­dose APAP­induced acute liver and kidney injury. So far, few studies have investigated the effects of the therapeutic dose (1/10 of the high dose) or of the low dose (1/100 of the high dose) of APAP on the cells. The aim of this study was to investigate the cellular effects of therapeutic- or low­dose APAP treatment on hepatoma cells and kidney fibroblasts. As expected, high­dose APAP treatment inhibited while therapeutic and low­dose treatment did not inhibit cell survival of kidney tubular epithelial cells. In addition, therapeutic-dose treatment induced an increase in the H2O2 level, activated the caspase­9/­3 cascade, and induced cell apoptosis of hepatoma cells. Notably, APAP promoted fibroblast proliferation, even at low doses. This study demonstrates that different cellular effects are exerted upon treatment with different APAP concentrations. Our results indicate that treatment with the therapeutic dose of APAP may exert an antitumor activity on hepatoma, while low­dose treatment may be harmful for patients with fibrosis, since it may cause proliferation of fibroblasts.


Assuntos
Acetaminofen/farmacologia , Apoptose/efeitos dos fármacos , Acetaminofen/toxicidade , Animais , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Rim/citologia , Túbulos Renais/citologia , Ratos
19.
Diabetologia ; 57(2): 424-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317792

RESUMO

AIMS/HYPOTHESIS: Chronic inflammatory processes have been increasingly shown to be involved in the pathogenesis of diabetes and diabetic nephropathy. Recently, we demonstrated that a lectin-like domain of thrombomodulin (THBD), which is known as THBD domain 1 (THBDD1) and which acts independently of protein C activation, neutralised an inflammatory response in a mouse model of sepsis. Here, therapeutic effects of gene therapy with adeno-associated virus (AAV)-carried THBDD1 (AAV-THBDD1) were tested in a mouse model of type 2 diabetic nephropathy. METHODS: To assess the therapeutic potential of THBDD1 and the mechanisms involved, we delivered AAV-THBDD1 (10(11) genome copies) into db/db mice and tested the effects of recombinant THBDD1 on conditionally immortalised podocytes. RESULTS: A single dose of AAV-THBDD1 improved albuminuria, renal interstitial inflammation and glomerular sclerosis, as well as renal function in db/db mice. These effects were closely associated with: (1) inhibited activation of the nuclear factor κB (NF-κB) pathway and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome; (2) promotion of nuclear factor (erythroid-derived 2)-like 2 (NRF2) nuclear translocation; and (3) suppression of mitochondria-derived apoptosis in the kidney of treated mice. CONCLUSIONS/INTERPRETATION: AAV-THBDD1 gene therapy resulted in improvements in a model of diabetic nephropathy by suppressing the NF-κB-NLRP3 inflammasome-mediated inflammatory process, enhancing the NRF2 antioxidant pathway and inhibiting apoptosis in the kidney.


Assuntos
Antioxidantes/farmacologia , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/metabolismo , Terapia Genética , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Trombomodulina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/imunologia , Terapia Genética/métodos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR
20.
Mol Med Rep ; 7(3): 826-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291778

RESUMO

Japanese encephalitis virus (JEV), a mosquito­borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV­induced apoptosis are unclear. In order to identify the viral proteins associated with JEV­induced apoptosis, pEGFP­non­structural protein 3 (NS3) 1­619 (expressing the JEV NS3 intact protein, including the protease and helicase domains), pEGFP­NS3 1­180 (expressing the protease domain) and pEGFP­NS3 163­619 (expressing the helicase domain) were transfected into target cells to study cell death. Results demonstrate that the JEV NS3 intact protein and protease and helicase domains induce cell death. In addition, cell death was identified to be significantly higher in cells transfected with the NS3 protease domain compared with the intact protein and helicase domain. Caspase activation was also analyzed in the current study. NS3 intact protein and NS3 protease and helicase domains activated caspase­9/­3­dependent and ­independent pathways. However, caspase­8 activity was not found to be significantly different in NS3­transfected cells compared with control. In summary, the present study demonstrates that the NS3 helicase and protease domains of JEV activate caspase­9/­3­dependent and ­independent cascades and trigger cell death.


Assuntos
Apoptose , Caspases/metabolismo , DNA Helicases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/enzimologia , Proteínas não Estruturais Virais/metabolismo , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Chlorocebus aethiops , DNA Helicases/química , DNA Helicases/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transfecção , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA