Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Biodivers Data J ; 12: e123669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015794

RESUMO

Background: The Asian Cat Snake genus Boiga Fitzinger, 1826 includes 37 species, with high species diversity. Five species of Boiga have been recorded in China including B.multomaculata (Boie, 1827), B.kraepelini (Stejneger, 1902), B.cyanea (Duméril, Bibron & Duméril, 1854), B.guangxiensis (Wen, 1998) and B.siamensis (Nutaphand, 1971). Previously, the validity of the species Boigastoliczkae (Wall, 1909) was controversial. B.stoliczkae was considered in synonymy with B.ochracea. Currently, the taxonomy of B.multomaculata and B.ochracea (Theobald, 1868) was revised so that B.multomaculata and B.ochracea actually represent a single species and B.stoliczkae was recognised as a valid species. B.stoliczkae was previously known to be found in the west from central Nepal through Darjeeling, Sikkim and Bhutan to Arunachal Pradesh and Assam in north-eastern India. New information: One adult female specimen of the Asian Cat Snake was collected from Gyirong County, near the China-Nepal border, Tibet, China during fieldwork on August 2023. We compared morphology and mitochondrial DNA sequence data with all the species of the genus Boiga. Both datasets strongly supported referring the Chinese specimens to B.stoliczkae (Wall, 1909) due to the 21 mid-dorsal scale rows and the uncorrected p-distance (mitochondrial DNA gene cytochrome b) between this specimen and B.stoliczkae which is 1.7%. We further described morphological characters of the Chinese specimen in detail and compared these with the specimens that had been previously described. The dorsal ground colour of the Chinese specimen is dark brown, with a black stripe distributed almost evenly across the tail. This is a novel morph of the species B.stoliczkae. The newly-collected Chinese specimen expands the distribution of the species on the Himalaya range.

2.
Mol Phylogenet Evol ; 199: 108146, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986756

RESUMO

The contributions of divergent selection and spatial isolation to population divergence are among the main focuses of evolutionary biology. Here we employed integrated methods to explore genomic divergence, demographic history and calling-song differentiation in the cicada Subpsaltria yangi, and compared the genotype and calling-song phenotype of different populations occurring in distinct habitats. Our results indicate that this species comprises four main lineages with unique sets of haplotypes and calling-song structure, which are distinctly associated with geographic isolation and habitats. The populations occurring on the Loess Plateau underwent substantial expansion at âˆ¼0.130-0.115 Ma during the Last Interglacial. Geographic distance and host shift between pairs of populations predict genomic divergence, with geographic distance and acoustical signal together explaining > 60% of the divergence among populations. Differences in calling songs could reflect adaptation of populations to novel environments with different host plants, habitats and predators, which may have resulted from neutral divergence at the molecular level followed by natural selection. Geomorphic barriers and climate oscillations associated with Pleistocene glaciation may have been primary factors in shaping the population genetic structure of this species. Ultimately this may couple with a host shift in leading toward allopatric speciation in S. yangi, i.e., isolation by distance. Our findings improve understanding of divergence in allopatry of herbivorous insects, and may inform future studies on the molecular mechanisms underlying the association between genetic/phenotypic changes and adaptation of insects to novel niches and host plants.

3.
Heliyon ; 10(13): e33309, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040283

RESUMO

Cardiovascular diseases (CVDs) are one of the most significant diseases that pose a threat to human health. The innovative traditional Chinese medicine Tongxinluo Capsule, developed under the guidance of the theory of traditional Chinese medicine, has good clinical efficacy in various cardiovascular diseases, this medicine has effects such as blood protection, vascular protection, myocardial protection, stabilizing vulnerable plaques, and vasodilation. However, CVDs are a multifactorial disease, and their underlying mechanisms are not fully understood. Therefore, exploring the mechanism of action and clinical application of Tongxinluo Capsule in the treatment of various cardiovascular diseases is beneficial for exerting its therapeutic effect from multiple components, targets, and pathways. At the same time, it provides broader treatment ideas for other difficult to treat diseases in the cardiovascular event chain, and has significant theoretical and clinical significance for improving the treatment of cardiovascular diseases with traditional Chinese medicine.

4.
Nat Aging ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020094

RESUMO

Aging of hematopoietic stem cells (HSCs) is accompanied by impaired self-renewal ability, myeloid skewing, immunodeficiencies and increased susceptibility to malignancies. Although previous studies highlighted the pivotal roles of individual metabolites in hematopoiesis, comprehensive and high-resolution metabolomic profiles of different hematopoietic cells across ages are still lacking. In this study, we created a metabolome atlas of different blood cells across ages in mice. We reveal here that purine, pyrimidine and retinol metabolism are enriched in young hematopoietic stem and progenitor cells (HSPCs), whereas glutamate and sphingolipid metabolism are concentrated in aged HSPCs. Through metabolic screening, we identified uridine as a potential regulator to rejuvenate aged HSPCs. Mechanistically, uridine treatment upregulates the FoxO signaling pathway and enhances self-renewal while suppressing inflammation in aged HSCs. Finally, we constructed an open-source platform for public easy access and metabolomic analysis in blood cells. Collectively, we provide a resource for metabolic studies in hematopoiesis that can contribute to future anti-aging metabolite screening.

5.
Front Zool ; 21(1): 15, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863001

RESUMO

The most extraordinary systems of symbiosis in insects are found in the suborder Auchenorrhyncha of Hemiptera, which provide unique perspectives for uncovering complicated insect-microbe symbiosis. We investigated symbionts associated with bacteriomes and fat bodies in six cicada species, and compared transmitted cell number ratio of related symbionts in ovaries among species. We reveal that Sulcia and Hodgkinia or a yeast-like fungal symbiont (YLS) are segregated from other host tissues by the bacteriomes in the nymphal stage, then some of them may migrate to other organs (i.e., fat bodies and ovaries) during host development. Particularly, YLS resides together with Sulcia in the "symbiont ball" of each egg and the bacteriomes of young-instar nymphs, but finally migrates to the fat bodies of adults in the majority of Hodgkinia-free cicadas, whereas it resides in both bacteriome sheath and fat bodies of adults in a few other species. The transmitted Sulcia/YLS or Sulcia/Hodgkinia cell number ratio in ovaries varies significantly among species, which could be related to the distribution and/or lineage splitting of symbiont(s). Rickettsia localizes to the nuclei of bacteriomes and fat bodies in some species, but it was not observed to be transmitted to the ovaries, indicating that this symbiont may be acquired from environments or from father to offspring. The considerable difference in the transovarial transmission process of symbionts suggests that cellular mechanisms underlying the symbiont transmission are complex. Our results may provide novel insights into insect-microbe symbiosis.

6.
Gene ; 927: 148696, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878986

RESUMO

Selecting appropriate reference genes is crucial for ensuring the accuracy and reliability of gene expression study using reverse transcription-quantitative PCR (RT-qPCR). To screen the optimal reference genes for analyzing gene expression in different tissues of the vector leafhopper Psammotettix striatus which causes extensive damage to a wide range of crops by vectoring multiple plant pathogenic microorganisms, the transcriptome data from Malpighian tubules (MTs) of P. striatus were mined. Twenty alternative candidate reference genes were initially selected for screening, among which seven genes with diverse Gene Ontology (GO) annotations were choosed as candidate reference genes, i.e., ribosomal protein L7A (RPL7A), ribosomal protein S28 (RPS28), ribosomal protein L22 (RPL22), ribosomal protein LP2 (RPLP2), H3 histone family 3A (H3F3A), elongation factor 1γ (EF-1γ), and elongation factor 1α (EF-1α). Gene expression levels in different tissues of P. striatus adults were examined using RT-qPCR, and their expression stability was analyzed using multiple reference gene screening software. This study revealed EF-1α as the most abundantly expressed gene, while RPL22 exhibited the lowest expression levels. EF-1α showed the most stable expression, whereas RPS28 showed the least stability. Various software tools confirmed EF-1α as the most stable single reference gene, and EF-1α and RPLP2 an optimal combination. This study provides a foundation for future investigation of the transmission of pathogenic microorganisms mediated by the vector leafhoppers, the function of the MTs, the biosynthesis of brochosomes, the coevolutionary processes and nutritional interactions of symbionts and host insects, and the gene expression study of other sap-sucking insects.

7.
Angew Chem Int Ed Engl ; : e202409079, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874984

RESUMO

Despite the widespread investigations on the M-N-C type single atom catalysts (SACs) for oxygen evolution reaction (OER), an internal conflict between its intrinsic thermodynamically structural instability and apparent catalytic steadiness has long been ignored. Clearly unfolding this contradiction is necessary and meaningful for understanding the real structure-property relation of SACs. Herein, by using the well-designed pH-dependent metal leaching experiments and X-ray absorption spectroscopy, an unconventional structure reconstruction of M-N-C catalyst during OER process was observed. Combining with density functional theory calculations, the initial Ni-N coordination is easily broken in the presence of adsorbed OH*, leading to favorable formation of Ni-O coordination. The formed Ni-O works stably as the real active center for OER catalysis in alkaline media but unstably in acid, which clearly explains the existing conflict. Unveiling the internal contradiction between structural instability and catalytic steadiness provides valuable insights for rational design of single atom OER catalysts.

8.
ACS Synth Biol ; 13(6): 1633-1646, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38860462

RESUMO

A growing number of applications require simultaneous detection of multiplexed nucleic acid targets in a single reaction, which enables higher information density in combination with reduced assay time and cost. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-Cas system have broad applications for the detection of nucleic acids due to their strong specificity, high sensitivity, and excellent programmability. However, realizing multiplexed detection is still challenging for the CRISPR-Cas system due to the nonspecific collateral cleavage activity, limited signal reporting strategies, and possible cross-reactions. In this review, we summarize the principles, strategies, and features of multiplexed detection based on the CRISPR-Cas system and further discuss the challenges and perspective.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Técnicas Biossensoriais/métodos , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
9.
Chin J Nat Med ; 22(5): 416-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796215

RESUMO

Bazi Bushen (BZBS), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy in testicular dysfunction within D-galactose and NaNO2 mouse models. This study aimed to ascertain if BZBS could also mitigate the decline in testicular function associated with natural aging. Therefore, male aged mice were employed to evaluate the preventive effects of BZBS on male reproductive aging. This was achieved by assessing sex hormone production, testicular histomorphology, and spermatogenesis. Relative to the untreated aged control group, BZBS administration elevated the levels of sex hormones and spermatocyte populations and preserved normal testicular structure in aged mice. Notably, spermatogenesis was maintained. Further analyses, including malondialdehyde (MDA) assays and real-time PCR, indicated that BZBS diminished testicular oxidative stress and the inflammatory burden. Corroborating these findings, mice treated with BZBS exhibited reductions in the populations of senescent and apoptotic cells within the seminiferous tubules, suggesting alleviated cellular damage. In contrast, we observed that rapamycin, a drug known for its longevity benefits, induced excessive testicular apoptosis and did not decrease lipid peroxidation. Collectively, our results highlight BZBS's promising clinical potential in counteracting male reproductive aging, underlining its mechanisms of action.


Assuntos
Envelhecimento , Medicamentos de Ervas Chinesas , Estresse Oxidativo , Espermatogênese , Testículo , Animais , Masculino , Camundongos , Envelhecimento/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Malondialdeído/metabolismo , Hormônios Esteroides Gonadais/metabolismo
10.
Environ Sci Technol ; 58(21): 9436-9445, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691809

RESUMO

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.


Assuntos
Peróxido de Hidrogênio , Titânio , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Titânio/química , Ferro/química , Radical Hidroxila/química , Catálise , Eletrodos
11.
NPJ Sci Food ; 8(1): 28, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744951

RESUMO

Finger millet, a cereal grain widely consumed in India and Africa, has gained more attention in recent years due to its high dietary fibre (arabinoxylan) and trace mineral content, and its climate resilience. The aim of this study was to understand the interactions between potassium (K+), calcium (Ca2+) and zinc (Zn2+) ions and the arabinoxylan structure and determine its ion-binding capacity. Three variations of a proposed model of the arabinoxylan structure were constructed and first principles Density Functional Theory calculations were carried out to determine the cation-binding capacity of the arabinoxylan complexes. Zn2+-arabinoxylan complexes were highly unstable and thermodynamically unfavourable in all three models. Ca2+ and K+ ions, however, form thermodynamically stable complexes, particularly involving two glucuronic acid residues as a binding pocket. Glucuronic acid residues are found to play a key role in stabilising the cation-arabinoxylan complex, and steric effects are more important to the stability than charge density. Our results highlight the most important structural features of the millet fibre regarding ion-storage capacity, and provide valuable preliminary data for confirmatory experimental studies and for the planning of clinical trials where the bioavailability of bound ions following digestion may be tested.

12.
Nat Commun ; 15(1): 3233, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622140

RESUMO

Electrochemical hydrogenation of acetonitrile based on well-developed proton exchange membrane electrolyzers holds great promise for practical production of ethylamine. However, the local acidic condition of proton exchange membrane results in severe competitive proton reduction reaction and poor selection toward acetonitrile hydrogenation. Herein, we conduct a systematic study to screen various metallic catalysts and discover Pd/C exhibits a 43.8% ethylamine Faradaic efficiency at the current density of 200 mA cm-2 with a specific production rate of 2912.5 mmol g-1 h-1, which is about an order of magnitude higher than the other screened metal catalysts. Operando characterizations indicate the in-situ formed PdHx is the active centers for catalytic reaction and the adsorption strength of the *MeCH2NH2 intermediate dictates the catalytic selectivity. More importantly, the theoretical analysis reveals a classic d-band mediated volcano curve to describe the relation between the electronic structures of catalysts and activity, which could provide valuable insights for designing more effective catalysts for electrochemical hydrogenation reactions and beyond.

13.
Chin Med ; 19(1): 61, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594761

RESUMO

BACKGROUND: Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS: We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or ß-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS: The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS: BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.

14.
J Control Release ; 369: 88-100, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471640

RESUMO

Cell-free DNA (cfDNA) released from dead cells could be a player in some autoimmune disorders by activating Toll-like receptor 9 (TLR9) and inducing proinflammatory cytokines. Cationic nanoparticles (cNPs) address cfDNA clearance, yet challenges persist, including toxicity, low specificity and ineffectiveness against endocytosed cfDNA. This study introduced pH-sensitive cNPs, reducing off-target effects and binding cfDNA at inflammatory sites. This unique approach inhibits the TLR9 pathway, offering a novel strategy for inflammation modulation. Synthesized cNPs, with distinct cationic moieties, exhibit varied pKa values, enhancing cfDNA binding. Comprehensive studies elucidate the mechanism, demonstrating minimal extracellular binding, enhanced endosomal DNA binding, and optimal tumor necrosis factor-α suppression. In a traumatic brain injury mice model, pH-sensitive cNPs effectively suppress inflammatory cytokines, highlighting their potential in acute inflammation regulation.


Assuntos
Cátions , Ácidos Nucleicos Livres , Endossomos , Inflamação , Camundongos Endogâmicos C57BL , Nanopartículas , Receptor Toll-Like 9 , Animais , Nanopartículas/administração & dosagem , Nanopartículas/química , Concentração de Íons de Hidrogênio , Endossomos/metabolismo , Inflamação/tratamento farmacológico , Receptor Toll-Like 9/metabolismo , Masculino , Lesões Encefálicas Traumáticas/tratamento farmacológico , Camundongos , Citocinas/metabolismo , Humanos , Fator de Necrose Tumoral alfa/metabolismo
15.
Fitoterapia ; 175: 105924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537886

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Autofagia , Caenorhabditis elegans , Dendrobium , Modelos Animais de Doenças , Extratos Vegetais , Proteostase , Animais , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Dendrobium/química , Proteostase/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Proteínas tau/metabolismo , Fenóis/farmacologia , Fenóis/isolamento & purificação , Flavanonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
16.
Heliyon ; 10(6): e27646, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509951

RESUMO

Ageing is becoming an increasingly serious problem; therefore, there is an urgent need to find safe and effective anti-ageing drugs. Aims: To investigate the effects of Bazi Bushen capsule (BZBS) on the senescence of mesenchymal stem cells (MSCs) and explore its mechanism of action. Methods: Network pharmacology was used to predict the targets of BZBS in delaying senescence in MSCs. For in vitro studies, MSCs were treated with D-gal, BZBS, and NMN, and cell viability, cell senescence, stemness-related genes, and cell cycle were studied using cell counting kit-8 (CCK-8) assay, SA-ß-galactosidase (SA-ß-gal) staining, Quantitative Real-Time PCR (qPCR) and flow cytometry (FCM), respectively. Alkaline phosphatase (ALP), alizarin red, and oil red staining were used to determine the osteogenic and lipid differentiation abilities of MSCs. Finally, the expression of senescence-related genes and cyclin-related factors was detected by qPCR and western blotting. Results: Network pharmacological analysis suggested that BZBS delayed cell senescence by interfering in the cell cycle. Our in vitro studies suggested that BZBS could significantly increase cell viability (P < 0.01), decrease the quantity of ß-galactosidase+ cells (P < 0.01), downregulate p16 and p21 (P < 0.05, P < 0.01), improve adipogenic and osteogenic differentiation, and upregulate Nanog, OCT4 and SOX2 genes (P < 0.05, P < 0.01) in senescent MSCs. Moreover, BZBS significantly reduced the proportion of senescent MSCs in the G0/G1 phase (P < 0.01) and enhanced the expression of CDK4, Cyclin D1, and E2F1 (P < 0.05, P < 0.01, respectively). Upon treatment with HY-50767A, a CDK4 inhibitor, the upregulation of E2F1 was no longer observed in the BZBS group. Conclusions: BZBS can protect MSCs against D-gal-induced senescence, which may be associated with cell cycle regulation via the Cyclin D1/CDK4/E2F1 signalling pathway.

17.
Zootaxa ; 5403(5): 571-586, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38480416

RESUMO

Angusta gen. n. is erected in the cicada tribe Leptopsaltriini Moulton, 1923, and one new species, Angusta fangtingyui sp. n., is described from China. The relationship of this new genus to related taxa is discussed based on morphology and the phylogeny of Angusta fangtingyui gen. & sp. n. and representative species of subtribes Puranina, Leptopsaltriina, Euterpnosiina and Leptosemiina, which was reconstructed based on the concatenated dataset of three genes (COI + EF-1 + ARD1). Accordingly, Angusta gen. n. is assigned to Euterpnosiina of Leptopsaltriini.


Assuntos
Hemípteros , Animais , China
18.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474986

RESUMO

This paper presents a low-power, high-gain integrator design that uses a cascode operational transconductance amplifier (OTA) with floating inverter-amplifier (FIA) assistance. Compared to a traditional cascode, the proposed integrator can achieve a gain of 80 dB, while reducing power consumption by 30%. Upon completing the analysis, the value of the FIA drive capacitor and clock scheme for the FIA-assisted OTA were obtained. To enhance the dynamic range (DR) and mitigate quantization noise, a tri-level quantizer was employed. The design of the feedback digital-to-analog converter (DAC) was simplified, as it does not use additional mismatch shaping techniques. A third-order, discrete-time delta-sigma modulator was designed and fabricated in a 0.18 µm complementary metal-oxide semiconductor (CMOS) process. It operated on a 1.8 V supply, consuming 221 µW with a 24 kHz bandwidth. The measured SNDR and DR were 90.9 dB and 95.3 dB, respectively.

19.
J Colloid Interface Sci ; 664: 360-370, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479272

RESUMO

Manganese sulfide (MnS) is a promising converion-type anode for sodium storage, owing to the virtues of high theoretical capacity, coupled with it crustal abundance and cost-effectiveness. Nevertheless, MnS suffers from inadequate electronic conductivity, sluggish Na+ reaction kinetics and considerable volume variation during discharge/charge process, thereby impeding its rate capability and capacity retention. Herein, a novel lamellar heterostructured composite of Fe-doped MnS nanoparticles/positively charged reduced graphene oxide (Fe-MnS/PG) was synthesized to overcome these issues. The Fe-doping can accelerate the ion/electron transfer, endowing fast electrochemical kinetics of MnS. Meanwhile, the graphene space confinement with strong MnSC bond interactions can facilite the interfacial electron transfer, hamper volume expansion and aggregation of MnS nanoparticles, stabilizing the structural integrity, thus improving the Na+ storage reversibility and cyclic stability. Combining the synergistic effect of Fe-doping and space confinement with strong MnSC bond interactions, the as-produced Fe-MnS/PG anode presents a remarkable capacity of 567 mAh/g at 0.1 A/g and outstanding rate performance (192 mAh/g at 10 A/g). Meanwhile, the as-assembled sodium-ion capacitor (SIC) can yield a high energy density of 119 Wh kg-1 and a maximum power density of 17500 W kg-1, with capacity retention of 77 % at 1 A/g after 5000 cycles. This work offers a promising strategy to develop MnS-based practical SICs with high energy and long lifespan, and paves the way for fabricating advanced anode materials.

20.
Opt Express ; 32(2): 1465-1477, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297697

RESUMO

High power and high brightness laser lighting puts forward new requirements for phosphor converters such as high luminous efficiency, high thermal conductivity and high saturation threshold due to the severe thermal effect. The structure design of phosphor converters is proposed as what we believe to be a novel strategy for less heat production and more heat conduction. In this work, the rod-shaped YAG:Ce phosphor ceramics (PCs) and disc-shaped YAG:Ce PCs as control group were fabricated by the gel casting and vacuum sintering, to comparatively study the luminescence performance for LD lighting, on the premise that the total number of transverse Ce3+ ions and the volume of samples from two comparison groups were same. All rod YAG:Ce PCs with low Ce3+ concentration exhibited the high luminous efficiency and better thermal stability than YAG:Ce discs with high Ce3+ concentration. Under the laser power density of 47.8 W/mm2, the luminous saturation was never observed in all rod-shaped YAG:Ce PCs. The high luminous efficacy of 245∼274 lm/W, CRI of 56.3∼59.5 and CCT of 4509∼4478 K were achieved. More importantly, due to the extremely low Ce3+ doping concentration (0.01 at%), rod-shaped ceramics based LDs devices showed the excellent thermal performance and their surface temperatures were even below 30.5 °C surprisingly under the laser power density of 20.3 W·mm-2 (2 W). These results indicate that the rod shape of phosphor converter is a promising structure engineering for high power laser lighting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA