Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38995760

RESUMO

BACKGROUND: Geometry calibration for robotic CT system is necessary for obtaining acceptable images under the asynchrony of two manipulators. OBJECTIVE: We aim to evaluate the impact of different types of asynchrony on images and propose a reference-free calibration method based on a simplified geometry model. METHODS: We evaluate the impact of different types of asynchrony on images and propose a novel calibration method focused on asynchronous rotation of robotic CT. The proposed method is initialized with reconstructions under default uncalibrated geometry and uses grid sampling of estimated geometry to determine the direction of optimization. Difference between the re-projections of sampling points and the original projection is used to guide the optimization direction. Images and estimated geometry are optimized alternatively in an iteration, and it stops when the difference of residual projections is close enough, or when the maximum iteration number is reached. RESULTS: In our simulation experiments, proposed method shows better performance, with the PSNR increasing by 2%, and the SSIM increasing by 13.6% after calibration. The experiments reveal fewer artifacts and higher image quality. CONCLUSION: We find that asynchronous rotation has a more significant impact on reconstruction, and the proposed method offers a feasible solution for correcting asynchronous rotation.

2.
IEEE Trans Med Imaging ; PP2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865221

RESUMO

In medical applications, the diffusion of contrast agents in tissue can reflect the physiological function of organisms, so it is valuable to quantify the distribution and content of contrast agents in the body over a period. Spectral CT has the advantages of multi-energy projection acquisition and material decomposition, which can quantify K-edge contrast agents. However, multiple repetitive spectral CT scans can cause excessive radiation doses. Sparse-view scanning is commonly used to reduce dose and scan time, but its reconstructed images are usually accompanied by streaking artifacts, which leads to inaccurate quantification of the contrast agents. To solve this problem, an unsupervised sparse-view spectral CT reconstruction and material decomposition algorithm based on the multi-channel score-based generative model (SGM) is proposed in this paper. First, multi-energy images and tissue images are used as multi-channel input data for SGM training. Secondly, the organism is multiply scanned in sparse views, and the trained SGM is utilized to generate multi-energy images and tissue images driven by sparse-view projections. After that, a material decomposition algorithm using tissue images generated by SGM as prior images for solving contrast agent images is established. Finally, the distribution and content of the contrast agents are obtained. The comparison and evaluation of this method are given in this paper, and a series of mouse scanning experiments are carried out to verify the effectiveness of the method.

3.
J Xray Sci Technol ; 32(4): 1079-1098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669512

RESUMO

BACKGROUND: The rapid development of industrialization in printed circuit board (PCB) warrants more complexity and integrity, which entails an essential procedure of PCB inspection. X-ray computed laminography (CL) enables inspection of arbitrary regions for large-sized flat objects with high resolution. PCB inspection based on CL imaging is worthy of exploration. OBJECTIVE: This work aims to extract PCB circuit layer information based on CL imaging through image segmentation technique. METHODS: In this work, an effective and applicable segmentation model for PCB CL images is established for the first time. The model comprises two components, with one integrating edge diffusion and l0 smoothing to filter CL images with aliasing artifacts, and the other being the fuzzy energy-based active contour model driven by local pre-fitting energy to segment the filtered images. RESULT: The proposed model is able to suppress aliasing artifacts in the PCB CL images and has good performance on images of different circuit layers. CONCLUSIONS: Results of the simulation experiment reveal that the method is capable of accurate segmentation under ideal scanning condition. Testing of different PCBs and comparison of different segmentation methods authenticate the applicability and superiority of the model.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Algoritmos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA