Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Biosci (Landmark Ed) ; 28(11): 320, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38062832

RESUMO

BACKGROUND: The brain is one of the most vulnerable metastasis sites in lung cancer; approximately 40-50% of lung cancer patients develop brain metastasis during the disease course, contributing to the poor prognosis and high mortality of lung cancer patients. Therefore, it is important to clarify the molecular mechanism underlying brain metastasis of lung cancer for improving the overall survival of lung cancer patients. The present study aimed to investigate the potential role of blood-brain barrier (BBB) permeability in the development of brain metastasis of lung cancer and explore the effect of aspirin in an in-vitro BBB model. METHODS: An in-vitro BBB model was established. The expression of heat shock protein 70 (HSP 70), zonula occludens-1 (ZO-1), and occludin in rat brain microvascular endothelial cells was detected using Western blot at different time points following the administration of aspirin. RESULTS: HSP70, ZO-1, and occludin expressions did not show significant changes before aspirin administration, but increased noticeably after aspirin administration. Tumor necrosis factor-α (TNF-α) could significantly attenuate the increased expression of these proteins induced by aspirin. Additionally, TNF-α also significantly reversed the aspirin-induced decrease of BBB permeability. CONCLUSIONS: Aspirin may inhibit brain metastasis of lung cancer in a time-dependent manner via upregulating tight junction proteins to reduce BBB permeability, and this effect can be reversed by TNF-α.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Ratos , Animais , Humanos , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Ocludina/farmacologia , Células Endoteliais/metabolismo , Regulação para Cima , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Aspirina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Junções Íntimas/metabolismo
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(2): 188-192, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-31106537

RESUMO

OBJECTIVE: To study the relationship between hypoxia and the hypoxia inducible factor-1α (HIF-1α) from lung cancer cells, to reveal the possible mechanism of brain metastases of lung cancer. METHODS: The hypoxia model of A549 lung cancer cells was established. After hypoxia culture of A549 cells for 0.5, 2, 4, 8, 12 and 24 h (normal oxygen culture at the same time point was set as the control group), the mass concentration of HIF-1α in A549 lung cancer cell culture medium were determined by ELISA. Transwell chamber was used to construct an in vitro blood brain barrier model, was treated with A549 lung cancer cell culture medium after different time points of hypoxia, Tran endothelial resistance (TER) change of blood-brain barrier model in instrument, to reflect the changes of blood-brain barrier permeability in vitro; A549 lung cancer cells in the culture medium were counted under Transwell room. A549 lung cancer cells with hypoxia at different time points injected into Wistar rats via tail vein, Western blot method was used to menstruate expression of tight junction associated protein Claudin-5 in the brain tissues, Evans blue to detect the change of blood brain barrier permeability in rats. RESULTS: Compared with the control group, the HIF-1α mass concentration in the cell culture solution of A549 increased, the in vitro blood-brain barrier model TER decreased, and the cell number of A549 that passed through transwell into the lower chamber increased (all P<0.05) after hypoxia 2 h, the above effect was most obvious when hypoxia 8 h (all P<0.01). After hypoxia 24 h, it was restored to the control group level. In the in vivo experiment of rats, compared with the control group, the mass percent of Evans blue in rat brain tissues increased after A549 cell culture solution with hypoxia 2 h was injected via caudal vein, meaning increased the permeability of rat blood brain barrier, while the expression of Claudin-5 protein in rat brain tissues decreased (all P<0.05). The effect was most obvious when A549 cell culture solution with hypoxia 8 h was injected into rat tail vein (P<0.01 ). Ejectionof hypoxia 24 h A549 cell culture solution yielded the same effects as those in the control group. CONCLUSION: Hypoxia can induce the increase of HIF-1α in lung cancer cells. The increase of HIF-1α results in the decrease of Claudin-5 expression and increase of blood-brain barrier permeability, leading to lung cancer cells metastasis into the brain.


Assuntos
Neoplasias Encefálicas/secundário , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Células A549 , Animais , Hipóxia Celular , Humanos , Transplante de Neoplasias , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA