Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202416912, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445491

RESUMO

For single-atom catalysts (SACs), the dopants situated near the metal site have demonstrated a significant impact on the catalytic properties. However, the effect of dopants situated further away from the metal centers and their working mechanisms remain to be elucidated. Herein, we conduct density functional theory-driven studies on regulating the peripheral nitrogen dopants in graphene-based SACs, with a particular focus on Ir1 SAC, for propane dehydrogenation (PDH). It is found that increasing the distance between the N dopant and the Ir1 site results in a different energy change for the reaction process compared to the dense doping model with only first and second-shell N species. The proposed stochastic doping models demonstrate statistically that increasing the N dopant in farther shells not only enhances the activity of Ir1 but also maintains a high selectivity for propene, which is verified by experimental tests. The modulation of the d-band center of Ir1 by stochastic N dopants effectively modifies the binding strength of reaction intermediates, thereby enabling the optimization of the potential energy surface of PDH. These results deepen the understanding of dopant states around metal sites and provide an important implication for the doping engineering in heterogeneous catalysis.

2.
J Am Chem Soc ; 146(1): 263-273, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109718

RESUMO

Dual-atom catalysts (DACs) with paired active sites can provide unique intrinsic properties for heterogeneous catalysis, but the synergy of the active centers remains to be elucidated. Here, we develop a high-performance DAC with Zn1Co1 species anchored on nitrogen-doped carbon (Zn1Co1/NC) as the dominant active site for the propane dehydrogenation (PDH) reaction. It exhibits several times higher turnover frequency (TOF) of C3H8 conversion and enhanced C3H6 selectivity compared to Zn1/NC or Co1/NC with only a single-atom site. Various experimental and theoretical studies suggest that the enhanced PDH performance stems from the promoted activation of the C-H bond of C3H8 triggered by the electronic interaction between Zn1 and Co1 colligated by N species. Moreover, the dynamic sinking of the Zn1 site and rising of the Co1 site, together with the steric effect of the dissociated H species at the bridged N during the PDH reaction, provides a feasible channel for C3H6 desorption through the more exposed Co1 site, thereby boosting the selectivity. This work provides a promising strategy for designing robust hetero DACs to simultaneously increase activity and selectivity in the PDH reaction.

3.
JACS Au ; 3(10): 2835-2843, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885592

RESUMO

The activation of alkanes on metal catalysts may involve a precursor-mediated mechanism, in which impinging molecules are first trapped on the catalyst surface to form an adsorbed precursor and may undergo extensive excursion on the surface in search of an active site. A characteristic feature of such a mechanism is an increasing initial sticking probability (S0) with decreasing incidence energy at low incidence energies. Indeed, such "negative activation" was observed on the reconstructed Pt(110)-(2 × 1) surface with a missing row structure. In this paper, we describe an extensive theoretical investigation of methane dissociation on Pt(110)-(2 × 1) using a machine-learned high-dimensional potential energy surface (PES) based on a first-principles training data set. Quasi-classical trajectories (QCTs) are calculated on the PES to simulate the dissociation of both CH4 and CHD3 at various incidence energies. The agreement with the measured initial sticking probabilities is shown to be substantially improved for high incidence energies when compared to previous theoretical studies, indicating a better characterization of the dissociation barrier. Additional QCT calculations have been carried out for the trapping and diffusion of CHD3 under experimental conditions at low incidence energies. The trapping probability is shown to increase with decreasing incidence energy, consistent with the experimentally observed "negative activation" below 10 kJ/mol. The reactivity of the trapped methane is attributed to the combined effect of its nonthermal diffusion across the surface Pt rows and the lowered barrier reached by surface thermal fluctuation. These simulations shed valuable light on the microscopic dynamics of the initial and often rate-limiting step in heterogeneous catalytic processes involving alkanes.

4.
Angew Chem Int Ed Engl ; 62(38): e202307470, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523147

RESUMO

Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2 O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2 O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h-1 g-1 , which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.

5.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375152

RESUMO

In this work, we investigate the effect of peripheral B doping on the electrocatalytic nitrogen reduction reaction (NRR) performance of N-doped graphene-supported single-metal atoms using density functional theory (DFT) calculations. Our results showed that the peripheral coordination of B atoms could improve the stability of the single-atom catalysts (SACs) and weaken the binding of nitrogen to the central atom. Interestingly, it was found that there was a linear correlation between the change in the magnetic moment (µ) of single-metal atoms and the change in the limiting potential (UL) of the optimum NRR pathway before and after B doping. It was also found that the introduction of the B atom suppressed the hydrogen evolution reaction, thereby enhancing the NRR selectivity of the SACs. This work provides useful insights into the design of efficient SACs for electrocatalytic NRR.

6.
J Am Chem Soc ; 145(24): 13169-13180, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279334

RESUMO

Direct selective oxidation of methane (DSOM) to high value-added oxygenates under mild conditions is attracting considerable interest. Although state-of-the-art supported metal catalysts can improve methane conversion, it is still challenging to avoid the deep oxidation of oxygenates. Here, we develop a highly efficient metal-organic frameworks (MOFs)-supported single-atom Ru catalyst (Ru1/UiO-66) for the DSOM reaction using H2O2 as an oxidant. It endows nearly 100% selectivity and an excellent turnover frequency of 185.4 h-1 for the production of oxygenates. The yield of oxygenates is an order of magnitude higher than that on UiO-66 alone and several times higher than that on supported Ru nanoparticles or other conventional Ru1 catalysts, which show severe CO2 formation. Detailed characterizations and density functional theory calculations reveal a synergistic effect between the electron-deficient Ru1 site and the electron-rich Zr-oxo nodes of UiO-66 on Ru1/UiO-66. The Ru1 site is responsible for the activation of CH4 via the resulting Ru1═O* species, while the Zr-oxo nodes undertake the formation of oxygenic radical species to produce oxygenates. In particular, the Zr-oxo nodes retrofitted by Ru1 can prune the excess H2O2 to inactive O2 more than •OH species, helping to suppress the over-oxidation of oxygenates.

7.
J Phys Chem Lett ; 12(34): 8423-8429, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34436916

RESUMO

The initial impulsive diffusion of hot hydrogen atoms resulted from the dissociative chemisorption of H2 at atomically dispersed Pt atoms embedded in Cu(111) is investigated using ab initio molecular dynamics. Upon dissociation, one of the two hydrogen atoms tends to roam away from the dissociation site while the other remains trapped. It is shown that the fraction of diffusion and the average diffusion length increase with the incident energy and H2 vibrational excitation, due apparently to the increased initial kinetic energy of the hot atoms. Most importantly, the strong interaction with surface electron-hole pairs, modeled using an electronic friction model, is shown to play an important role in rapid energy dissipation and significant retardation of the impulsive diffusion.

8.
Angew Chem Int Ed Engl ; 59(15): 6122-6127, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31960551

RESUMO

Atomic metal catalysis (AMC) provides an effective way to enhance activity for the oxygen reduction reaction (ORR). Cobalt anchored on nitrogen-doped carbon materials have been extensively reported. The carbon-hosted Co-N4 structure was widely considered as the active site; however, it is very rare to investigate the activity of Co partially coordinated with N, for example, Co-N4-x Cx . Herein, the activity of Co-N4-x Cx with tunable coordination environment is investigated as the active sites for ORR catalysis. The defect (di-vacancies) on carbon is essential for the formation of Co-N4-x Cx . N species play two important roles in promoting the intrinsic activity of atomic metal catalyst: N coordinated with Co to manipulate the reactivity by modification of electronic distribution and N helped to trap more Co to increase the number of active sites.

9.
ACS Appl Mater Interfaces ; 11(50): 47525-47534, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31766839

RESUMO

Single-atom catalysts (SACs) have recently been shown to have high performance in catalyzing the synthesis of NH3 from N2. Here, we systematically investigated a series of single transition metal atoms anchored on stepped CeO2 (CeO2-S) to screen the potential electrocatalysts for a N2 reduction reaction (NRR) via density functional theory computations. We first demonstrated that these SACs are stable via large calculated binding energies. Second, we evaluated the adsorption of *N2 over CeO2-S-supported single atoms. Here, those systems that can activate N2 molecules were selected as candidates. We then showed that CeO2-S-supported single Mo and Ru atoms have high catalytic activity for NRR via low limiting potentials of -0.52 and -0.35 V, respectively. Meanwhile, the competitive hydrogen evolution reaction is highly suppressed over these two SACs because the adsorption of *N2 is prior to *H. Finally, the origin of the NRR activity over these SACs was investigated. This work offers useful insights into designing high-performance CeO2-based electrocatalysts for NRR.

10.
Nanoscale ; 10(37): 17893-17901, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30225476

RESUMO

Ostwald ripening is a key mechanism for sintering of highly dispersed metal nanoparticles in supported catalysts. However, our microscopic understanding of such processes is still primitive. In this work, the atomistic mechanism of the Ostwald ripening of Cu on CeO2(111) is examined via density functional theory calculations. In particular, the detachment of a single Cu atom from ceria supported Cun (n = 2-10, 12, 14, 16, 18, and 20) clusters and trapping on the CeO2(111) surface is investigated in the absence and presence of CO adsorption. It is shown that the adsorption of CO on Cu reduces its detachment energy, which helps in the formation of single atom species on CeO2(111). In addition, the Cu1-CO species is found to diffuse on the CeO2(111) surface with a much lower barrier than a Cu atom. These observations suggest an efficient mechanism for the Ostwald ripening of Cu clusters supported on ceria in the presence of CO. It is further predicted that the Cu1-CO species can eventually migrate to a step site on ceria, generating a stable single-atom motif with a relatively larger binding energy. Finally, the single Cu atom catalyst is shown to possess high activity for the oxygen reduction reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA