Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39127049

RESUMO

Globally, the majority of habitat loss is irreversible, and most species will never recover their former ranges. We have learned a great deal about what leads to population decline and extinction, but less about recovery. The recently downlisted giant panda provides a unique opportunity to understand the mechanisms of species recovery. In our study, we estimate giant panda suitable habitats, population density, and gene flow across landscapes to fully investigate the direct and indirect ecological mechanisms underlying bold conservation strategies. We found that the Giant Panda National Survey has modestly but systematically underestimated population size. China's effort to mitigate anthropogenic disturbances was associated with increased panda population density through improving habitat quality and reducing habitat fragmentation. Enhanced landscape connectivity reduced inbreeding via gene flow but indirectly increased inbreeding temporarily due to high local panda density. Although the panda's recovery has been geographically uneven, we provide evidence for improving connectivity and gene flow resulting from conservation efforts. If these processes can be sustained and improved, the panda's path to recovery will be less encumbered by loss of genetic diversity, fostering hope that the present rate of recovery will not be stalled. Findings from this study will not only help guide future giant panda conservation management but also provide a model for how a more mechanistic examination of the genetic processes underlying species recovery can foster the development of more effective strategies for endangered species recovery.

2.
iScience ; 27(7): 110394, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39092175

RESUMO

Sirenians exhibit unique aquatic adaptations, showcasing both convergent adaptive features shared with cetaceans and unique characteristics such as cold sensitivity and dense bones. Here, we report a chromosome-level genome of the African manatee (Trichechus senegalensis) with high continuity, completeness, and accuracy. We found that genes associated with osteopetrosis have undergone positive selection (CSF1R and LRRK1) or pseudogenized (FAM111A and IGSF23) in the African manatee, potentially contributing to the dense bone formation. The loss of KCNK18 may have increased their sensitivity to cold water temperatures. Moreover, we identified convergent evolutionary signatures in 392 genes among fully aquatic mammals, primarily enriched in skin or skeletal system development and circadian rhythm, which contributed to the transition from terrestrial to fully aquatic lifestyles. The African manatee currently possesses a small effective population size and low genome-wide heterozygosity. Overall, our study provides genetic resources for understanding the evolutionary characteristics and conservation efforts of this species.

3.
Sci China Life Sci ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38970727

RESUMO

The Chinese pangolin (Manis pentadactyla, MP) has been extensively exploited and is now on the brink of extinction, but its population structure, evolutionary history, and adaptive potential are unclear. Here, we analyzed 94 genomes from three subspecies of the Chinese pangolin and identified three distinct genetic clusters (MPA, MPB, and MPC), with MPB further divided into MPB1 and MPB2 subpopulations. The divergence of these populations was driven by past climate change. For MPB2 and MPC, recent human activities have caused dramatic population decline and small population size as well as increased inbreeding, but not decrease in genomic variation and increase in genetic load probably due to strong gene flow; therefore, it is crucial to strengthen in situ habitat management for these two populations. By contrast, although human activities have a milder impact on MPA, it is at high risk of extinction due to long-term contraction and isolation, and genetic rescue is urgently needed. MPB1 exhibited a relatively healthy population status and can potentially serve as a source population. Overall, our findings provide novel insights into the conservation of the Chinese pangolin and biogeography of the mammals of eastern Asia.

4.
Zookeys ; 1202: 343-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836193

RESUMO

A morphological and molecular analyses of a newly discovered species, Glossobalanusweiisp. nov., from Danzhou city, Hainan Island, China is presented. Several morphological characters distinguish this new species, while molecular analyses confirm significant genetic divergence from its recognized congeners (p-distance > 0.25 in mitochondrial genomes). Phylogenetic analyses place the new species in a distinct sister clade to G.polybranchioporus, which is afforded first-class state protection in China. An updated retrieval table is provided for the eight species of Hemichordata found in China. Hemichordate diversity remains underestimated and this new species emphasizes the need for their ongoing conservation in southern China.

5.
Innovation (Camb) ; 5(4): 100643, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912429

RESUMO

Stony corals, the primary architects of coral reef ecosystems, are largely underrepresented in omics studies despite their importance. The presence of endosymbiotic Symbiodiniaceae algae complicates the extraction of pure coral DNA, posing a challenge for genomic research. Here, we devised a comprehensive methodological framework that incorporates various experimental treatments to achieve 99% purity in coral DNA extraction and a robust bioinformatics pipeline to guarantee the assembly of high-quality, contamination-free coral genomes. Validation of our framework using Acropora millepora samples demonstrated its efficacy and superiority in obtaining high-quality pure coral genomes using easily accessible adult colony. This integrated framework serves as a critical foundation for large-scale genome-enabled research on stony corals, providing insight into coral evolution and conservation.

6.
Conserv Biol ; : e14291, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745485

RESUMO

Globally, marine fish communities are being altered by climate change and human disturbances. We examined data on global marine fish communities to assess changes in community-weighted mean temperature affinity (i.e., mean temperatures within geographic ranges), maximum length, and trophic levels, which, respectively, represent the physiological, morphological, and trophic characteristics of marine fish communities. Then, we explored the influence of climate change and fishing on these characteristics because of their long-term role in shaping fish communities, especially their interactive effects. We employed spatial linear mixed models to investigate their impacts on community-weighted mean trait values and on abundance of different fish lengths and trophic groups. Globally, we observed an initial increasing trend in the temperature affinity of marine fish communities, whereas the weighted mean length and trophic levels of fish communities showed a declining trend. However, these shift trends were not significant, likely due to the large variation in midlatitude communities. Fishing pressure increased fish communities' temperature affinity in regions experiencing climate warming. Furthermore, climate warming was associated with an increase in weighted mean length and trophic levels of fish communities. Low climate baseline temperature appeared to mitigate the effect of climate warming on temperature affinity and trophic levels. The effect of climate warming on the relative abundance of different trophic classes and size classes both exhibited a nonlinear pattern. The small and relatively large fish species may benefit from climate warming, whereas the medium and largest size groups may be disadvantaged. Our results highlight the urgency of establishing stepping-stone marine protected areas to facilitate the migration of fishes to habitats in a warming ocean. Moreover, reducing human disturbance is crucial to mitigate rapid tropicalization, particularly in vulnerable temperate regions.


Análisis de la respuesta de las comunidades de peces marinos ante el cambio climático y la pesca Resumen Las comunidades de peces marinos sufren alteraciones en todo el mundo causadas por el cambio climático y las perturbaciones humanas. Analizamos los datos sobre las comunidades de peces marinos de todo el mundo para valorar los cambios en la afinidad térmica media (es decir, la temperatura media dentro de las distribuciones geográficas), la longitud máxima y los niveles tróficos, todos con ponderación comunitaria, los cuales representan respectivamente las características fisiológicas, morfológicas y tróficas de las comunidades de peces marinos. Después exploramos la influencia del cambio climático y la pesca sobre estos rasgos, ya que desempeñan un papel a largo plazo en la formación de las comunidades de peces, especialmente sus efectos interactivos. Empleamos modelos espaciales lineales mixtos para investigar el impacto del cambio climático y la pesca sobre los valores promedio de los rasgos con ponderación comunitaria y sobre la abundancia de las diferentes longitudes de peces y grupos tróficos. Observamos una tendencia inicial en incremento en la afinidad térmica de las comunidades de peces marinos en todo el mundo, mientras que el promedio con ponderación comunitaria de la longitud y el nivel trófico mostró una tendencia en declinación. Sin embargo, estos cambios en las tendencias no fueron significativas, probablemente debido a la gran variación de las comunidades de latitud media. La presión de pesca incrementó la afinidad térmica de las comunidades de peces en las regiones que experimentan el calentamiento climático. Además, este calentamiento estuvo asociado con un incremento en el promedio con ponderación comunitaria de la longitud y el nivel trófico de las comunidades. La temperatura de referencia climática baja pareció mitigar el efecto del calentamiento climático sobre la afinidad térmica y los niveles tróficos. El efecto del calentamiento sobre la abundancia relativa de las diferentes clases tróficas y el tamaño de las clases exhibió un patrón no lineal. Las especies de peces pequeños y relativamente grandes podrían beneficiarse con el calentamiento climático, mientras que los grupos de mayor tamaño y tamaño mediano estarían en desventaja. Nuestros resultados resaltan la urgencia por establecer áreas marinas protegidas que faciliten la migración de peces hacia hábitats en un océano cada vez más caliente. Además, es crucial reducir la perturbación humana para mitigar la rápida tropicalización, particularmente en las regiones templadas vulnerables.

8.
Trends Genet ; 40(7): 613-620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644132

RESUMO

Camouflage is a classic example of a trait wherein animals respond to natural selection to avoid predation or attract prey. This unique phenomenon has attracted significant recent attention and the rapid development of integrative research methods is facilitating advances in our understanding of the in-depth genetic mechanisms of camouflage. In this review article, we revisit camouflage definitions and strategies and then we examine the underlying mechanisms of the two most common forms of camouflage, crypsis and masquerade, that have recently been elucidated using multiple approaches. We also discuss unresolved questions related to camouflage. Ultimately, we highlight the implications of camouflage for informing various key issues in ecology and evolution.


Assuntos
Evolução Biológica , Mimetismo Biológico , Seleção Genética , Animais , Mimetismo Biológico/genética , Seleção Genética/genética , Comportamento Predatório , Fenótipo , Pigmentação/genética
9.
Proc Natl Acad Sci U S A ; 121(11): e2317430121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437540

RESUMO

Brown-and-white giant pandas (hereafter brown pandas) are distinct coat color mutants found exclusively in the Qinling Mountains, Shaanxi, China. However, its genetic mechanism has remained unclear since their discovery in 1985. Here, we identified the genetic basis for this coat color variation using a combination of field ecological data, population genomic data, and a CRISPR-Cas9 knockout mouse model. We de novo assembled a long-read-based giant panda genome and resequenced the genomes of 35 giant pandas, including two brown pandas and two family trios associated with a brown panda. We identified a homozygous 25-bp deletion in the first exon of Bace2, a gene encoding amyloid precursor protein cleaving enzyme, as the most likely genetic basis for brown-and-white coat color. This deletion was further validated using PCR and Sanger sequencing of another 192 black giant pandas and CRISPR-Cas9 edited knockout mice. Our investigation revealed that this mutation reduced the number and size of melanosomes of the hairs in knockout mice and possibly in the brown panda, further leading to the hypopigmentation. These findings provide unique insights into the genetic basis of coat color variation in wild animals.


Assuntos
Ursidae , Animais , Camundongos , Ursidae/genética , Peptídeo Hidrolases , Precursor de Proteína beta-Amiloide , Animais Selvagens , Camundongos Knockout
10.
Sci China Life Sci ; 67(6): 1255-1265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407773

RESUMO

Insects play important roles in the maintenance of ecosystem functioning and the provision of livelihoods for millions of people. However, compared with terrestrial vertebrates and angiosperms, such as the giant panda, crested ibis, and the metasequoia, insect conservation has not attracted enough attention, and a basic understanding of the geographical biodiversity patterns for major components of insects in China is lacking. Herein, we investigated the geographical distribution of insect biodiversity across multiple dimensions (taxonomic, genetic, and phylogenetic diversity) based on the spatial distribution and molecular DNA sequencing data of insects. Our analysis included 18 orders, 360 families, 5,275 genera, and 14,115 species of insects. The results revealed that Southwestern and Southeastern China harbored higher insect biodiversity and numerous older lineages, representing a museum, whereas regions located in Northwestern China harbored lower insect biodiversity and younger lineages, serving as an evolutionary cradle. We also observed that mean annual temperature and precipitation had significantly positive effects, whereas altitude had significantly negative effects on insect biodiversity in most cases. Moreover, cultivated vegetation harbored the highest insect taxonomic and phylogenetic diversity, and needleleaf and broadleaf mixed forests harbored the highest insect genetic diversity. These results indicated that human activities may positively contribute to insect spatial diversity on a regional scale. Our study fills a knowledge gap in insect spatial diversity in China. These findings could help guide national-level conservation plans and the post-2020 biodiversity conservation framework.


Assuntos
Biodiversidade , Insetos , Filogenia , China , Animais , Insetos/classificação , Insetos/genética , Variação Genética , Geografia , Conservação dos Recursos Naturais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA