Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7504-7515, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640354

RESUMO

Food allergy (FA) poses a growing global food safety concern, yet no effective cure exists in clinics. Previously, we discovered a potent antifood allergy compound, butyrolactone I (BTL-I, 1), from the deep sea. Unfortunately, it has a very low exposure and poor pharmacokinetic (PK) profile in rats. Therefore, a series of structural optimizations toward the metabolic pathways of BTL-I were conducted to provide 18 derives (2-19). Among them, BTL-MK (19) showed superior antiallergic activity and favorable pharmacokinetics compared to BTL-I, being twice as potent with a clearance (CL) rate of only 0.5% that of BTL-I. By oral administration, Cmax and area under the concentration-time curve (AUC0-∞) were 565 and 204 times higher than those of BTL-I, respectively. These findings suggest that butyrolactone methyl ketone (BTL-BK) could serve as a drug candidate for the treatment of FAs and offer valuable insights into optimizing the druggability of lead compounds.


Assuntos
4-Butirolactona , Antialérgicos , Animais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/química , 4-Butirolactona/farmacocinética , 4-Butirolactona/administração & dosagem , Administração Oral , Ratos , Humanos , Antialérgicos/farmacocinética , Antialérgicos/farmacologia , Antialérgicos/química , Antialérgicos/administração & dosagem , Relação Estrutura-Atividade , Masculino , Ratos Sprague-Dawley , Disponibilidade Biológica , Hipersensibilidade Alimentar/tratamento farmacológico , Camundongos
2.
Adv Sci (Weinh) ; 10(25): e2302685, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37395372

RESUMO

Ionic circuits using ions as charge carriers have demonstrated great potential for flexible and bioinspired electronics. The emerging ionic thermoelectric (iTE) materials can generate a potential difference by virtue of selective thermal diffusion of ions, which provide a new route for thermal sensing with the merits of high flexibility, low cost, and high thermopower. Here, ultrasensitive flexible thermal sensor arrays based on an iTE hydrogel consisting of polyquaternium-10 (PQ-10), a cellulose derivative, as the polymer matrix and sodium hydroxide (NaOH) as the ion source are reported. The developed PQ-10/NaOH iTE hydrogel achieves a thermopower of 24.17 mV K-1 , which is among the highest values reported for biopolymer-based iTE materials. The high p-type thermopower can be attributed to thermodiffusion of Na+ ions under a temperature gradient, while the movement of OH- ions is impeded by the strong electrostatic interaction with the positively charged quaternary amine groups of PQ-10. Flexible thermal sensor arrays are developed through patterning the PQ-10/NaOH iTE hydrogel on flexible printed circuit boards, which can perceive spatial thermal signals with high sensitivity. A smart glove integrated with multiple thermal sensor arrays is further demonstrated, which endows a prosthetic hand with thermal sensation for human-machine interaction.

3.
Nanoscale ; 15(26): 11237-11246, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37345803

RESUMO

Flexible, lightweight, and low-cost thermoelectric thin films are promising for self-powered wearable electronics and sensors. In this work, we report on flexible Te nanostructures/PEDOT:PSS composite thin films with high power factor and their application as flexible temperature sensors. Te nanostructures with high crystallinity and high aspect ratios were synthesized through an environmentally friendly method without using highly toxic chemicals. Individual Te nanostructures achieve a thermoelectric figure of merit (ZT) of 0.13 at 300 K, indicating good potential as inorganic fillers for nanostructures/polymer hybrid materials. Based on the synthesized Te nanostructures, flexible p-type Te/PEDOT:PSS thin films were fabricated through a simple dilution and vacuum filtration method. The power factor of the as-prepared composite thin film outperforms that of either a Te or DMSO-treated PEDOT:PSS thin film, and importantly, it can be further enhanced to 149 µW m-1 K-2 by hot pressing, which is nearly threefold enhancement compared to the values reported for the vacuum-filtered flexible Te/PEDOT:PSS thin films in the literature. The hot-pressed composite thin film shows high flexibility with the electrical conductivity remaining almost unchanged after 1000 bending cycles under a bending radius of 5 mm. Flexible temperature sensors were fabricated based on the hot-pressed Te/PEDOT:PSS thin film, which exhibited high sensitivity in detecting temperature stimuli. The developed temperature sensors were applied onto a two-finger flexible mechanical claw for identifying hot/cold objects in robotic grasping. This work demonstrates an effective approach to enhance the thermoelectric power factor of flexible Te nanostructures/polymer composites and their promising application in flexible thermal sensing.

4.
Biosensors (Basel) ; 12(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140151

RESUMO

Oocyte vitrification technology is widely used for assisted reproduction and fertility preservation, which requires precise washing sequences and timings of cryoprotectant agents (CPAs) treatment to relieve the osmotic shock to cells. The gold standard Cryotop method is extensively used in oocyte vitrification and is currently the most commonly used method in reproductive centers. However, the Cryotop method requires precise and complex manual manipulation by an embryologist, whose proficiency directly determines the effect of vitrification. Therefore, in this study, an automatic microfluidic system consisting of a novel open microfluidic chip and a set of automatic devices was established as a standardized operating protocol to facilitate the conventional manual Cryotop method and minimize the osmotic shock applied to the oocyte. The proposed open microfluidic system could smoothly change the CPA concentration around the oocyte during vitrification pretreatment, and transferred the treated oocyte to the Cryotop with a tiny droplet. The system better conformed to the operating habits of embryologists, whereas the integration of commercialized Cryotop facilitates the subsequent freezing and thawing processes. With standardized operating procedures, our system provides consistent treatment effects for each operation, leading to comparable survival rate, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) level of oocytes to the manual Cryotop operations. The vitrification platform is the first reported microfluidic system integrating the function of cells transfer from the processing chip, which avoids the risk of cell loss or damage in a manual operation and ensures the sufficient cooling rate during liquid nitrogen (LN2) freezing. Our study demonstrates significant potential of the automatic microfluidic approach to serve as a facile and universal solution for the vitrification of various precious cells.


Assuntos
Microfluídica , Vitrificação , Criopreservação/métodos , Nitrogênio/farmacologia , Oócitos/fisiologia , Espécies Reativas de Oxigênio
5.
Nano Lett ; 22(17): 6888-6894, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054095

RESUMO

Superdiffusive thermal transport represents a unique phenomenon in heat conduction, which is characterized by a size (L) dependence of thermal conductivity (κ) in the form of κ ∝ Lß with a constant ß between 0 and 1. Although superdiffusive thermal transport has been theoretically predicted for SiGe alloys, direct experimental evidence is still lacking. Here, we report on a systematic experimental study of the thickness-dependent thermal conductivity of Si0.4Ge0.6 thin films grown by molecular beam epitaxy. The cross-plane thermal conductivity of Si0.4Ge0.6 thin films spanning a thickness range from 20 to 1120 nm was measured in the temperature range 120-320 K via a differential three-omega method. Results show that the thermal conductivity follows a consistent κ ∝ t0.26 power law with the film thickness (t) at different temperatures, providing direct experimental evidence that alloy-scattering dominated thermal transport in SiGe is superdiffusive.

6.
IEEE Trans Biomed Eng ; 69(12): 3562-3571, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35503841

RESUMO

Embryo vitrification is a fundamental technology utilized in assisted reproduction and fertility preservation. Vitrification involves sequential loading and unloading of cryoprotectants (CPAs) with strict time control, and transferring the embryo in a minimum CPA droplet to the vitrification straw. However, manual operation still cannot effectively avoid embryo loss, and the existing automatic vitrification systems have insufficient system reliability, and operate differently from clinical vitrification protocol. Through collaboration with in vitro fertilization (IVF) clinics, we are in the process realizing a robotic system that can automatically conduct the embryo vitrification process, including the pretreatment with CPAs, transfer of embryo to the vitrification straw, and cryopreservation with liquid nitrogen ( LN2). An open microfluidic chip (OMC) was designed to accommodate the embryo during the automatic CPAs pretreatment process. The design of two chambers connected by a capillary gap facilitated solution exchange around the embryo, and simultaneously reduced the risk of embryo loss in the flow field. In accordance to the well-accepted procedure and medical devices in manual operation, we designed the entire vitrification protocol, as well as the robotic prototype. In a practical experiment using mouse embryos, our robotic system showed a 100 % success rate in transferring and vitrifying the embryos, achieved comparable embryo survival rates (90.9 % versus 94.4 %) and development rates (90.0 % versus 94.1 %), when compared with the manual group conducted by the senior embryologist. With this study, we aim to facilitate the standardization of clinical vitrification from manual operation to a more efficient and reliable automated process.


Assuntos
Procedimentos Cirúrgicos Robóticos , Vitrificação , Humanos , Gravidez , Feminino , Camundongos , Animais , Microfluídica/métodos , Perda do Embrião , Reprodutibilidade dos Testes , Criopreservação/métodos , Crioprotetores , Embrião de Mamíferos
7.
J Am Chem Soc ; 144(20): 8938-8944, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576325

RESUMO

A concise and divergent synthesis of the polychlorinated marine steroids clionastatin A and B from inexpensive testosterone has been achieved through a unique two-stage chlorination-oxidation strategy. Key features of the two-stage synthesis include (1) conformationally controlled, highly stereoselective dichlorination at C1 and C2 and C4-OH-directed C19 oxygenation followed by a challenging neopentyl chlorination to install three chlorine atoms; (2) desaturation through one-pot photochemical dibromination-reductive debromination and anti-Markovnikov olefin oxidation by photoredox-metal dual catalysis to enhance the oxidation level of the backbone; and (3) Wharton transposition to furnish the D-ring enone. This synthesis proved that the introduction of the C19 chloride in the early stage of the synthesis secured the stability of the backbone against susceptibility to aromatization during the oxidation stage.


Assuntos
Alcenos , Cloro , Catálise , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA