Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 30(3): 679-685, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32367338

RESUMO

Chirality plays a very important role in medicine, biochemistry and other fields. Because the enantiomers of chiral drugs often show different pharmacology activity, metabolism, and toxicity, therefore, the recognition of chiral molecules is very important, and has become a hot spot and frontier of modern chemical research. In this paper, a new method for recognizing chiral molecular based on naphthalimide dye(NA)⊂cucurbit[5]uril(CB[7]) assembly is developed. NA as guest can be combined with the host CB[7] to form a 1:1 NA⊂CB[7] assembly. Furthermore, this assembly was used as a fluorescent probe to recognize D/L-phenylalanine and D/L-phenylalaninol by fluorescence titration. When D-phenylalanine or D-phenylalaninol was added to NA⊂CB[7] assembly, the fluorescent intensity of assembly was partially quenched, but when L-phenylalanine or L-phenylalaninol was added to NA⊂CB[7], the fluorescence intensity of the assembly almost unchanged. Herein, chiral recognition platform based on achiral NA⊂achiral CB[7] was constructed.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Corantes Fluorescentes/química , Imidazóis/química , Naftalimidas/química , Fenilalanina/análogos & derivados , Fenilalanina/análise , Corantes Fluorescentes/síntese química , Conformação Molecular , Estereoisomerismo
2.
Opt Lett ; 42(1): 171-174, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059206

RESUMO

We have experimentally investigated spatial-division multiplexed (SDM) Brillouin optical time-domain analysis in a heterogeneous multicore fiber whose central core and six outer cores are made from different preforms, showing a ∼70 MHz Brillouin frequency shift (BFS) difference between them. It reveals that the heterogeneous central core and the outer cores have different temperature sensitivities, but their strain sensitivities are almost the same. By making use of the distinct temperature coefficients of these two kinds of cores, simultaneous and discriminative temperature and strain measurements are achieved. The bending-induced Brillouin gain spectrum (BGS) broadening issue in off-center cores has been clarified, and a solution has been proposed to eliminate the uncertainty caused by a bending-induced BFS shift, by averaging the BFS variations of two symmetrical outer cores. We show a new perspective for discriminative measurement in Brillouin distributed sensors based on SDM solutions.

3.
Opt Lett ; 41(7): 1514-7, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192275

RESUMO

We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

4.
Opt Express ; 24(8): 8978-87, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137328

RESUMO

We have demonstrated a new approach for developing very large mode area silica-based microstructured Ytterbium (Yb)-doped fibers. The microstructured region acting as pump cladding around the core is composed by periodically arranged low-index Fluorine-doped silica inclusions with an extremely low filling ratio of 0.088. To the best of our knowledge, we achieved the most accurate controlling on cladding index by 1 × 10-5 via our passively doped cladding (PDC) method. Two fibers with 127µm and 50µm core diameter respectively were fabricated from the same final preform designed by this approach. It is verified that our 50µm core diameter fiber can maintain robust single mode behavior at 1064nm wavelength. The advantage of an all-solid structure along with a much simpler fabrication process makes our approach very suitable for realizing very large mode area fibers for high power fiber laser application.

5.
Opt Express ; 23(26): 33001-7, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831968

RESUMO

We report on a compact sensor by integrating a Mach-Zehnder interference and a cladding Bragg grating in a same section of all-solid photonic bandgap fiber. Theoretical investigation reveals that the Bragg grating resonance stems from the coupling of counter-propagating cladding LP01-like supermodes and the Mach-Zehnder interference works between a LP01-like supermode and LP01 core mode. Compared with the interference fringe, such supermode grating dip responses to axial strain in a more sensitive and opposite-direction manner. Whereas, the interference fringe shows a higher temperature sensitivity than the supermode grating dip. By means of these different responses, this device finds a useful application in the discrimination of temperature and axial strain.

6.
Opt Express ; 22(22): 27515-23, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401898

RESUMO

A temperature compensated magnetic field strength optical fiber sensor has been proposed and experimentally demonstrated. A fiber Bragg grating (FBG) is cascaded to modal interferometer (MI), which is fabricated by dual S-bend splicing between thin fiber (TF) and single mode fiber (SMF) with intentionally controlled misalignment between cores. We established a modified numerical model to describe the multi-mode interference of this exceptional S-bend and misalignment structure, together with the simulation based on beam propagation method to gain insight into its operation mechanism. The FBG is used to interrogate the temperature change, and then compensate the perturbation of temperature on transmission of the MI. Thanks to the proposed dual S-bend structure and the diameter-thinned TF used here; we have obtained high magnetic sensitivity of -0.0678 dB/Oe using only 4 mm TF after the elimination of ambient temperature change.

7.
Opt Express ; 22(12): 14127-34, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977511

RESUMO

The mitigation of both crosstalk and its wavelength dependent sensitivity for homogeneous multicore fiber (MCF) is theoretically investigated using an analytical evaluation approach. It is found there exists a performance trade-off between the crosstalk mitigation and its wavelength dependent sensitivity suppression. After characterizing the fabricated homogeneous MCFs, we verify that although the increasing core pitch can mitigate the crosstalk, the wavelength dependent sensitivity is drastically degraded from 0.07dB/nm to 0.11dB/nm, which is harmful to the dense wavelength division multiplexing (DWDM) transmission over C + L band using MCF.

8.
Opt Express ; 22(3): 2675-80, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663559

RESUMO

We propose a new technique to perform precise selective infiltration of an air hole in the photonic crystal fiber (PCF). To carry out the infiltration process, the end face of the PCF is covered by a mask, which is fabricated by femtosecond laser inscription from the lateral direction. This proposed method overcomes the conventional limitation of maximum mask thickness. An analytical model is further proposed and demonstrated accurate determinations of the fabricated channel diameter in the mask.

9.
Opt Express ; 21(20): 23812-21, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104292

RESUMO

A novel, simple, and compact optical fiber directional bending vector sensor based on Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. The device consists of a piece of seven-core photonic crystal fiber (PCF) sandwiched between two single mode fibers (SMFs) with a lateral offset splicing joint that covering two cores of PCF. Bending sensitivity of the seven-core PCF based MZI is changed by an axial rotation angle, which shows its capacity for recognizing positive and negative directions. Within a curvature range of -7.05 m-1 to 7.05 m-1, the calculated bending sensitivities of two resonant central wavelengths with opposite fiber orientations are 1.232 nm/m-1 and 1.174 nm/m-1, respectively. This novel MZI is formed by invoking interference between the LP01-like supermode and other higher order supermodes in the core, which leads to insensitive to ambient refractive index (ARI). We have also investigated the transmission characteristics of the sensor with the temperature change.

10.
Opt Lett ; 38(3): 269-71, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23381407

RESUMO

A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.273 pm/°C is obtained between room temperature and 900°C. By drilling vertical micro-channels using a femtosecond laser, the micro FP cavity can be filled with liquids and functions as a sensitive refractometer and the refractive index sensitivity obtained is ~851.3 nm/RIU (refractive index unit), which indicates an ultra low temperature cross-sensitivity of ~3.2×10(-7) RIU/°C.

11.
Appl Opt ; 51(36): 8516-20, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23262588

RESUMO

Photonic crystal fibers (PCFs) are widely used in all-fiber, high-power lasers and supercontinuum sources. However, the splice loss between PCFs and conventional fibers limits its development. Grin fibers and coreless fibers were used as a fiber lens to achieve low-loss, high-strength splicing between PCFs and single-mode fibers (SMFs). The beam propagation method was used to optimize the lengths of grin fibers and coreless fibers for a minimum splice loss. The splice loss changing with the lengths of grin fiber, coreless fiber, and the air-hole collapsed region was systematically studied theoretically and experimentally. Ultimately, a minimum splice loss of 0.26 dB at 1064 nm was realized between a high-nonlinear PCF and a conventional SMF with this method.

12.
Opt Lett ; 37(22): 4789-91, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164914

RESUMO

An alcohol not full-filled high-birefringence photonic crystal fiber (HiBi-PCF) temperature sensor based on an optical fiber Sagnac interferometer (OFSI) is demonstrated and investigated in detail. A new phenomenon that the resonant dip wavelengths of the temperature sensor blueshift with temperature increasing is observed, which is contrary to that of the previously reported alcohol filled HiBi-PCF OFSI temperature sensor. By considering the influences of the group birefringence and the thermo expansion of alcohol, this phenomenon is explained very well. The temperature sensitivity of the proposed sensor is about -1.17 nm/°C and is only one-sixth of that of the alcohol full-filled HiBi-PCF OSFI.

13.
Opt Lett ; 37(12): 2283-5, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739882

RESUMO

We propose and demonstrate a novel and simple dual-parameter measurement scheme based on a cascaded optical fiber device of long-period grating (LPG) and photonic crystal fiber (PCF) modal interferometer. The temperature and refractive index (RI) can be measured simultaneously by monitoring the spectral characteristics of the device. The implemented sensor shows distinctive spectral sensitivities of -30.82 nm/RIU (refractive index unit) and 47.4 pm/°C by the LPG, and 171.96 nm/RIU and 10.4 pm/°C by the PCF modal interferometer. The simultaneous measurement of the temperature and external RI is experimentally demonstrated by the sensor. The temperature shift and RI shift calculated by the sensor matrix agree well with the actual temperature and RI change in the experiment.


Assuntos
Interferometria/métodos , Fibras Ópticas , Fenômenos Ópticos , Fótons , Temperatura , Calibragem
14.
Opt Lett ; 37(8): 1373-5, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22513690

RESUMO

In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift. Measurement results show that the sensor has the resolution of the order of 8.7×10(-4) over the refractive index range of 1.33-1.40, and temperature sensitivity of the order of 10 pm/°C in the range of 20-100 °C.


Assuntos
Interferometria/instrumentação , Fibras Ópticas , Fenômenos Ópticos , Fótons , Ar , Glicerol/química
15.
Opt Express ; 19(18): 17344-9, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935098

RESUMO

We demonstrate the fabrication of high-quality LPFGs in simplified hollow-core photonic crystal fibers, composed of a hollow hexagonal core and six crown-like air holes, using CO2-laser-irradiation method. Theoretical and experimental investigations indicate that the LPFGs are originated from the strong mode-coupling between the LP01 and LP11 core modes. And a dominant physical mechanism for the mode-coupling is experimentally confirmed to be the periodic microbends rather than the deformations of the cross-section or other common factors. In addition, the LPFGs are highly sensitive to strain and nearly insensitive to temperature, and are promising candidates for gas sensors and nonlinear optical devices.

16.
Opt Express ; 19(14): 12913-8, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747443

RESUMO

A novel in-fiber modal interferometer based on a long period grating (LPG) inscribed in a two-mode all-solid photonic bandgap fiber (AS-PBGF) is presented. After inserting a small piece of the AS-PBGF into two sections of standard single-mode fiber (SMF) via being spliced slight core offset, LPG is inscribed in the AS-PBGF. The LPG is especially designed to realize the coupling between two core modes of LP01 and LP11 in the AS-PBGF. Two core modes LP01 and LP11 of the AS-PBGF are excited firstly at the input spliced point and actualized energy exchange when they pass through the LPG. Then the two beams will interfere at the output spliced point to form a high-contrast in-fiber modal interferometer. The proposed interferometer has some advantages such as configuration compact, high interference contrast and the wavelength spacing well controlled by changing the position of the LPG without changing the total length of AS-PBGF.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Interferometria/instrumentação , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Appl Phys Lett ; 98(19): 191106, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21677908

RESUMO

We report on multimodal coherent anti-Stokes Raman scattering (CARS) imaging with a source composed of a femtosecond fiber laser and a photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). By switching between two PCFs with different zero dispersion wavelengths, a tunable signal beam from the FOPO covering the range from 840 to 930 nm was produced. By combining the femtosecond fiber laser and the FOPO output, simultaneous CARS imaging of a myelin sheath and two-photon excitation fluorescence imaging of a labeled axons in rat spinal cord have been demonstrated at the speed of 20 µs per pixel.

18.
Opt Lett ; 36(9): 1548-50, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540923

RESUMO

A compact temperature sensor based on a fiber loop mirror (FLM) combined with an alcohol-filled high-birefringence photonic crystal fiber (PCF) is proposed and experimentally demonstrated. The output of the FLM is an interference spectrum with many resonant dips, of which the wavelengths are quite sensitive to the change of the refractive index of the filled alcohol for the interference of the FLM. Simulation analysis predicts a high temperature sensitivity, and experimental results show it reaches up to 6.6 nm/°C for the 6.1-cm-long PCF used in the FLM.

19.
Opt Express ; 19(6): 4985-90, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445134

RESUMO

We have fabricated a novel nanoweb fiber with web-like bundle of the fused-silica membranes with different thickness in its cross section. We pumped the 0.55-µm-thick membrane with 200-fs laser pulse at 800-nm just adjacent to its second-zero-dispersion wavelength, and demonstrated the polarization dependent visible supercontinuum (SC). The mode patterns were recorded in detail and analyzed at different polarization angles of incident pulse. The broadband spectrum range from ~350 nm to 950 nm is achieved for TM mode excitation. The tunable visible SC in the nanoweb fiber may be used in the substrate integrated waveguide for sensing.

20.
Opt Lett ; 35(20): 3516-8, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20967118

RESUMO

We demonstrate generation of 48fs pulses with linear chirp using a short (27mm) fiber optical parametric oscillator (FOPO), which is synchronously pumped by a mode-locked ytterbium-doped fiber laser. We also study the pulse quality for both the short- and long-wavelength operation where the fiber length inside of the oscillator varies from 17 to 61mm. The optimal pulse duration is observed only in the short-wavelength operation. Furthermore, we model the FOPO system as a single-pass parametric amplifier including dispersive pulse broadening and walk-off between the pump and output. The optimal condition arises from the minimization of the walk-off and dispersion. When walk-off is large, the parametric amplification process is most efficient over some reduced effective fiber length, leading to an upper limit in the amount of the observed pulse broadening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA