Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187678

RESUMO

Chromosome instability (CIN) and subsequent aneuploidy are prevalent in various human malignancies, influencing tumor progression such as metastases and relapses. Extensive studies demonstrate the development of chemoresistance in high-CIN tumors, which poses significant therapeutic challenges. Given the association of CIN with poorer prognosis and suppressed immune microenvironment observed in colorectal carcinoma (CRC), here we aimed to discover chemotherapeutic drugs exhibiting increased inhibition against high-CIN CRC cells. By using machine learning methods, we screened out two BCL-XL inhibitors Navitoclax and WEHI-539 as CIN-sensitive reagents in CRC. Subsequent analyses using a CIN-aneuploidy cell model confirmed the vulnerability of high-CIN CRC cells to these drugs. We further revealed the critical role of BCL-XL in the viability of high-CIN CRC cells. In addition, to ease the evaluation of CIN levels in clinic, we developed a three-gene signature as a CIN surrogate to predict prognosis, chemotherapeutic and immune responses in CRC samples. Our results demonstrate the potential value of CIN as a therapeutic target in CRC treatment and the importance of BCL-XL in regulating survival of high-CIN CRC cells, therefore representing a valuable attempt to translate a common trait of heterogeneous tumor cells into an effective therapeutic target.

2.
Curr Med Sci ; 43(4): 784-793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405607

RESUMO

OBJECTIVE: Gestational diabetes mellitus (GDM) is the most common metabolic disorder during pregnancy. LncRNA HLA complex group 27 (HCG27) plays a crucial role in various metabolic diseases. However, the relationship between lncRNA HCG27 and GDM is not clear. This study aimed to verify a competing endogenous RNA (ceRNA) interaction regulation axis of miR-378a-3p/mitogen-activated protein kinase 1 (MAPK1) regulated by HCG27 in GDM. METHODS: LncRNA HCG27 and miR-378a-3p were detected by RT-qPCR. The expression of MAPK1 in umbilical vein endothelial cells (HUVECs) was detected by RT-qPCR and that in the placenta by Western blotting. To explore the relationship among lncRNA HCG27, miR-378a-3p, MAPK1 and the glucose uptake ability of HUVECs, vector HCG27, si-HCG27, miR-378a-3p mimic and inhibitor were transfected to achieve overexpression and inhibition of HCG27 or miR-378a-3p. The interaction between miR-378a-3p and lncRNA HCG27 or MAPK1 was confirmed by the dual-luciferase reporter assay. Besides, glucose consumption by HUVECs was detected by the glucose assay kit. RESULTS: HCG27 expression was significantly decreased in both the placenta and primary umbilical vein endothelial cells, while the expression of miR-378a-3p was significantly increased in GDM tissues, and the expression of MAPK1 was decreased in GDM tissues. This ceRNA interaction regulation axis was proved to affect the glucose uptake function of HUVECs. The transfection of si-HCG27 could significantly reduce the expression of the MAPK1 protein. If the MAPK1 overexpression plasmid was transfected simultaneously with si-HCG27 transfection, the reduced glucose uptake in HUVECs resulting from the decrease in lncRNA HCG27 was reversed. MiR-378a-3p mimic can significantly reduce the mRNA expression of MAPK1 in HUVECs, whereas miR-378a-3p inhibitor can significantly increase the mRNA expression of MAPK1. The inhibition of miR-378a-3p could restore the decreased glucose uptake of HUVECs treated with si-HCG27. Besides, overexpression of lncRNA HCG27 could restore the glucose uptake ability of the palmitic acid-induced insulin resistance model of HUVECs to normal. CONCLUSION: LncRNA HCG27 promotes glucose uptake of HUVECs by miR-378a-3p/MAPK1 pathway, which may provide potential therapeutic targets for GDM. Besides, the fetal umbilical cord blood and umbilical vein endothelial cells collected from pregnant women with GDM after delivery could be used to detect the presence of adverse molecular markers of metabolic memory, so as to provide guidance for predicting the risk of cardiovascular diseases and health screening of offspring.


Assuntos
Diabetes Gestacional , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Gravidez , Diabetes Gestacional/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro
3.
J Zhejiang Univ Sci B ; 21(12): 990-998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33843164

RESUMO

Disulfide-bond A oxidoreductase-like protein (DsbA-L) is a molecular chaperone involved in the multimerization of adiponectin. Recent studies have found that DsbA-L is related to metabolic diseases including gestational diabetes mellitus (GDM), and can be regulated by peroxisome proliferator-activated receptor γ (PPARγ) agonists; the specific mechanism, however, is uncertain. Furthermore, the relationship between DsbA-L and the novel adipokine chemerin is also unclear. This article aims to investigate the role of DsbA-L in the improvement of insulin resistance by PPARγ agonists in trophoblast cells cultured by the high-glucose simulation of GDM placenta. Immunohistochemistry and western blot were used to detect differences between GDM patients and normal pregnant women in DsbA-L expression in the adipose tissue. The western blot technique was performed to verify the relationship between PPARγ agonists and DsbA-L, and to explore changes in key molecules of the insulin signaling pathway, as well as the effect of chemerin on DsbA-L. Results showed that DsbA-L was significantly downregulated in the adipose tissue of GDM patients. Both PPARγ agonists and chemerin could upregulate the level of DsbA-L. Silencing DsbA-L affected the function of rosiglitazone to promote the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/AKT pathway. Therefore, it is plausible to speculate that DsbA-L is essential in the environment of PPARγ agonists for raising insulin sensitivity. Overall, we further clarified the mechanism by which PPARγ agonists improve insulin resistance.


Assuntos
Diabetes Gestacional/metabolismo , Glutationa Transferase/fisiologia , Resistência à Insulina , PPAR gama/agonistas , Adulto , Células Cultivadas , Quimiocinas/farmacologia , Feminino , Glutationa Transferase/genética , Humanos , PPAR gama/fisiologia , Gravidez , Gordura Subcutânea/metabolismo
4.
Oncol Lett ; 12(1): 530-536, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347176

RESUMO

The aim of the present study was to examine the characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression. An immunofluorescence assay was used to detect E-cadherin and N-cadherin expression in infiltrative bladder cancer tissues, and immunofluorescence and western blot analysis were used to detect E-cadherin and N-cadherin expression in human urinary bladder grade II carcinoma 5637, transitional cell carcinoma UMUC-3 and invasive bladder carcinoma EJ cells. Cell proliferation, migration, invasion and plate colony formation assays were used to detect the proliferative, migratory and invasive abilities and the efficiency of plate colony formation of 5637, UMUC3 and EJ cells. A tumor xenograft formation assay was used to evaluate the tumorigenic abilities of 5637, UMUC-3 and EJ cells in vivo. E-cadherin and N-cadherin double-negative expression was identified in various pathological grades of infiltrative bladder cancers. E-cadherin positive and N-cadherin negative expression was exhibited by 5637 cells. By contrast, E-cadherin negative and N-cadherin positive expression was exhibited by EJ cells, and E-cadherin and N-cadherin double-negative expression was exhibited by UMUC-3 cells. The ability of cells to proliferate, migrate, invade, and the efficiency of plate colony formation and tumorigenic abilities of the cells were significantly different among 5637, UMUC-3 and EJ cells. These cell characteristics were significantly increased in UMUC-3 cells compared with 5637 cells; however, the characteristics were significantly decreased compared with EJ cells. The biological characteristics of bladder cancer cells with E-cadherin and N-cadherin double-negative expression was between bladder cancer cells that exhibited a E-cadherin positive and N-cadherin negative expression, and bladder cancer cells that exhibited E-cadherin negative and N-cadherin positive expression. The present study deduces that the status of E-cadherin and N-cadherin double-negative expression may participate in the process of epithelial-mesenchymal transition in the pathogenesis of bladder urothelial carcinoma.

5.
Biochem Biophys Res Commun ; 473(2): 421-7, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26987718

RESUMO

Members of the plant mitochondrial energy-dissipation pathway (MEDP) coordinate cellular energy metabolism, redox homeostasis and the balance of ROS production. However, the roles of MEDP members, particularly uncoupling protein (UCP), in resistance to turnip crinkle virus infection (TCV) are poorly understood. Here, we showed that disrupting some MEDP genes compromises plant resistance to TCV viral infection and this is partly associated with damaged photosynthetic characteristics, altered cellular redox and increased ROS production. Experiments using mutant plants with impaired cellular compartment redox poising further demonstrated that impaired chloroplast/mitochondria and cystosol redox increases the susceptibility of plants to viral infection. Our results illustrate a mechanism by which MEDP and cellular compartment redox act in concert to regulate plant resistance to viral infections.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/virologia , Carmovirus/fisiologia , Mitocôndrias/virologia , Doenças das Plantas/virologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Cloroplastos/virologia , Genes de Plantas , Glutationa/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fotossíntese , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Front Plant Sci ; 6: 982, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617622

RESUMO

Effects of brassinosteroids (BRs) on cucumber (Cucumis sativus L.) abiotic stresses resistance to salt, polyethylene glycol (PEG), cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX) pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 µM brassinolide (BL, the most active BRs) relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (C S ACS1), ripening-related ACC synthase2 (C S ACS2), ripening-related ACC synthase3 (C S ACS3), 1-aminocyclopropane-1-carboxylate oxidase1 (C S ACO1), 1-aminocyclopropane-1-carboxylate oxidase2 (C S ACO2), and C S AOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor) and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA