Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 911: 174482, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481875

RESUMO

Berberine facilitates the production of glucagon-like peptide-1 (GLP-1) by intestinal L cells. Here, we aimed to reveal the mechanism of berberine facilitating the production of GLP-1 by intestinal L cells. In this study, we confirmed that the 100 mg/kg berberine daily through diet decreased the miR-106b expression and elevated the expressions of ß-catenin and T-cell factor 4 (TCF4) in colon tissues of high-fat diet mice; berberine decreased the concentrations of triglycerides, total cholesterol and the ratio of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in mouse serum samples; berberine decreased the blood glucose in the mouse tail vein blood and promoted GLP-1 production by intestinal L cells in mouse serum samples and elevated the GLP-1 expression in mouse colon tissues. Meanwhile, the mechanism analysis demonstrated that a dose of 100 µM berberine down-regulated the miR-106b expression by elevating the methylation levels of miR-106b in STC-1 cells and miR-106b bound to TCF4 in 293T cells. Moreover, the 100 mg/kg berberine daily through diet activated the ß-catenin/TCF4 signaling pathway by decreasing miR-106b, thereby facilitating GLP-1 production in intestinal L cells through the in vivo assays. Conclusively, our experimental data illustrated that berberine decreased miR-106b expression by increasing its methylation levels and then activated the ß-catenin/TCF4 signaling pathway, thereby facilitating GLP-1 production by intestinal L cells.


Assuntos
beta Catenina
2.
Cell Death Dis ; 12(1): 113, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479193

RESUMO

In the status of obesity, the glucagon-like peptide-1 (GLP-1) level usually declines and results in metabolic syndrome. This study aimed to investigate the intracellular mechanism of GLP-1 synthesis in L cells from the perspective of microRNA (miRNA). In the present study, we found that GLP-1 level was down-regulated in the plasma and ileum tissues of obese mice, while the ileac miR-194 expression was up-regulated. In vitro experiments indicated that miR-194 overexpression down-regulated GLP-1 level, mRNA levels of proglucagon gene (gcg) and prohormone convertase 1/3 gene (pcsk1), and the nuclear protein level of beta-catenin (ß-catenin). Further investigation confirmed that ß-catenin could promote gcg transcription through binding to transcription factor 7-like 2 (TCF7L2). miR-194 suppressed gcg mRNA level via negatively regulating TCF7L2 expression. What's more, forkhead box a1 (Foxa1) could bind to the promoter of pcsk1 and enhanced its transcription. miR-194 suppressed pcsk1 transcription through targeting Foxa1. Besides, the interference of miR-194 reduced palmitate (PA)-induced cell apoptosis and the anti-apoptosis effect of miR-194 inhibitor was abolished by TCF7L2 knockdown. Finally, in HFD-induced obese mice, the silence of miR-194 significantly elevated GLP-1 level and improved the metabolic symptoms caused by GLP-1 deficiency. To sum up, our study found that miR-194 suppressed GLP-1 synthesis in L cells via inhibiting TCF7L2-mediated gcg transcription and Foxa1-mediated pcsk1 transcription. Meanwhile, miR-194 took part in the PA-induced apoptosis of L cells.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/biossíntese , MicroRNAs/metabolismo , Obesidade/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células L , Masculino , Camundongos , MicroRNAs/genética , Obesidade/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA