RESUMO
Ferroptosis is a cell death modality in which iron-dependent lipid peroxides accumulate on cell membranes. Cysteine, a limiting substrate for the glutathione system that neutralizes lipid peroxidation and prevents ferroptosis, can be converted by cystine reduction or synthesized from methionine. However, accumulating evidence shows methionine-based cysteine synthesis fails to effectively rescue intracellular cysteine levels upon cystine deprivation and is unable to inhibit ferroptosis. Here, we report that methionine-based cysteine synthesis is tissue-specific. Unexpectedly, we find that rather than inhibiting ferroptosis, methionine in fact plays an essential role during cystine deprivation-induced ferroptosis. Methionine-derived S-adenosylmethionine (SAM) contributes to methylation-dependent ubiquinone synthesis, which leads to lipid peroxides accumulation and subsequent ferroptosis. Moreover, SAM supplementation synergizes with Imidazole Ketone Erastin in a tumor growth suppression mouse model. Inhibiting the enzyme that converts methionine to SAM protects heart tissue from Doxorubicin-induced and ferroptosis-driven cardiomyopathy. This study broadens our understanding about the intersection of amino acid metabolism and ferroptosis regulation, providing insight into the underlying mechanisms and suggesting the methionine-SAM axis is a promising therapeutic strategy to treat ferroptosis-related diseases.
Assuntos
Ferroptose , Metionina , Espécies Reativas de Oxigênio , S-Adenosilmetionina , Ubiquinona , Ferroptose/efeitos dos fármacos , Animais , Metionina/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , S-Adenosilmetionina/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Doxorrubicina/farmacologia , Piperazinas/farmacologia , Cisteína/metabolismo , Camundongos Endogâmicos C57BL , Cistina/metabolismo , Masculino , Peróxidos Lipídicos/metabolismoRESUMO
The regulation of interfaces remains a critical and challenging aspect in the pursuit of highly efficient and stable perovskite solar cells (PSCs). Here, 2,2'-bipyridyl-4,4'-dicarboxylic acid (HBPDC) is incorporated as an interfacial layer between SnO2 and perovskite layers in PSCs. The two carboxylic acid moieties on HBPDC bind to SnO2 through esterification, while its nitrogen atoms, possessing lone electron pairs, interact with uncoordinated lead (Pb2+) atoms through Lewis acid-base interactions. This dual functionality enables simultaneous passivation of surface defects on both the SnO2 and buried perovskite layers. In addition, the electron-deficient nature of HBPDC enhances interfacial energy band alignment and facilitates electron transfer from the perovskite to SnO2. Furthermore, the incorporation of HBPDC strengthens the interfacial adhesion, improving mechanical reliability. As a result, the PSCs exhibited an impressive power conversion efficiency (PCE) of 25.41% under standard AM 1.5G conditions, along with remarkable environmental stability.
RESUMO
Preparing electrospun fibers by applying a potential difference between a polymeric solution and a contacting substrate is increasingly attracting attention in tissue engineering applications. Among the numerous polymers, polycaprolactone (PCL) bioscaffold has been widely investigated due to its biocompatibility and biodegradability. Bioactive powder can be added to further improve its performance. In the present study, bioactive glass powder modified by adding 0-6 wt.% antibacterial zinc element (coded as ZBG) was prepared through the sol-gel process. Furthermore, PCL bioscaffolds with various ZBG additions were prepared using the electrospinning technique. The zinc-doped bioactive glass powder and electrospun PCL/ZBG bioscaffolds were evaluated using scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy to determine their structural properties. Additionally, in vitro bioactivity, biocompatibility and antibacterial performance were investigated. Experimental results showed that sol-gelled ZBG powder possessed superior bioactivity and 0.8 g ZBG was the optimal addition to prepare PCL/ZBG bioscaffolds with. All the electrospun PCL/ZBG bioscaffolds were biocompatible and their antibacterial performance against two S. aureus strains (SA133 and Newman) improved with increasing zinc concentration. Electrospun PCL/ZBG bioscaffolds exhibited excellent bioactivity and have great potential for biomedical application.
RESUMO
Elevated lipid synthesis is one of the best-characterized metabolic alterations in cancer and crucial for membrane expansion. As a key rate-limiting enzyme in de novo fatty acid synthesis, ATP-citrate lyase (ACLY) is frequently up-regulated in tumors and regulated by posttranslational modifications (PTMs). Despite emerging evidence showing O-GlcNAcylation on ACLY, its biological function still remains unknown. Here, we observed a significant upregulation of ACLY O-GlcNAcylation in various types of human tumor cells and tissues and identified S979 as a major O-GlcNAcylation site. Importantly, S979 O-GlcNAcylation is required for substrate CoA binding and crucial for ACLY enzymatic activity. Moreover, it is sensitive to glucose fluctuation and decisive for fatty acid synthesis as well as tumor cell proliferation. In response to EGF stimulation, both S979 O-GlcNAcylation and previously characterized S455 phosphorylation played indispensable role in the regulation of ACLY activity and cell proliferation; however, they functioned independently from each other. In vivo, streptozocin treatment- and EGFR overexpression-induced growth of xenograft tumors was mitigated once S979 was mutated. Collectively, this work helps comprehend how cells interrogate the nutrient enrichment for proliferation and suggests that although mammalian cell proliferation is controlled by mitogen signaling, the ancient nutrition-sensing mechanism is conserved and still efficacious in the cells of multicellular organisms.
Assuntos
ATP Citrato (pro-S)-Liase , Proliferação de Células , Glucose , Lipogênese , Humanos , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/genética , Glucose/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Fosforilação , GlicosilaçãoRESUMO
CRISPR diagnostics are effective but suffer from low signal transduction efficiency, limited sensitivity, and poor stability due to their reliance on the trans-cleavage of single-stranded nucleic acid fluorescent reporters. Here, we present CrisprAIE, which integrates CRISPR/Cas reactions with "one to more" aggregation-induced emission luminogen (AIEgen) lighting-up fluorescence generated by the trans-cleavage of Cas proteins to AIEgen-incorporated double-stranded DNA labeled with single-stranded nucleic acid linkers and Black Hole Quencher groups at both ends (Q-dsDNA/AIEgens-Q). CrisprAIE demonstrates superior performance in the clinical nucleic acid detection of norovirus and SARS-CoV-2 regardless of amplification. Moreover, the diagnostic potential of CrisprAIE is further enhanced by integrating it with spherical nucleic acid-modified AIEgens (SNA/AIEgens) and a portable cellphone-based readout device. The improved CrisprAIE system, utilizing Q-dsDNA/AIEgen-Q and SNA/AIEgen reporters, exhibits approximately 80- and 270-fold improvements in sensitivity, respectively, compared to conventional CRISPR-based diagnostics. We believe CrisprAIE can be readily extended as a universal signal generation strategy to significantly enhance the detection efficiency of almost all existing CRISPR-based diagnostics.
Assuntos
Sistemas CRISPR-Cas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Norovirus/genética , COVID-19/virologia , DNA/genética , Corantes Fluorescentes/químicaRESUMO
Electrocatalytic carbon dioxide reduction (CO2RR) technology enables the conversion of excessive CO2 into high-value fuels and chemicals, thereby mitigating atmospheric CO2 concentrations and addressing energy scarcity. Single-atom alloys (SAAs) possess the potential to enhance the CO2RR performance by full utilization of atoms and breaking linear scaling relationships. However, quickly screening high-performance metal portfolios of SAAs remains a formidable challenge. In this study, we proposed an active learning (AL) framework to screen high-performance catalysts for CO2RR to yield fuels such as CH4 and CH3OH. After four rounds of AL iterations, the ML model attained optimal prediction performance with the test set R2 of approximately 0.94 and successful prediction was achieved for the binding free energy of *CHO, *COH, *CO, and *H on 380 catalyst surfaces with an accuracy within 0.20 eV. Subsequent analysis of the SAA catalysts' activity, selectivity, and stability led to the discovery of eight previously unexplored SAA catalysts for CO2RR. Notably, the surface activity of Ti@Cu(100), Au@Pt(100), and Ag@Pt(100) shines prominently. Utilizing DFT calculations, we elucidated the complete reaction pathway of the CO2RR on the surfaces of these catalysts, confirming their high catalytic activity with limiting potentials of -0.11, -0.34, and -0.46 eV, respectively, which are significantly lower than those of pure Cu catalysts. The results showcase the exceptional predictive prowess of AL, providing a valuable reference for the design of CO2RR catalysts.
RESUMO
Monitoring the changes of food products with easily applicable technique is important for the quality control of the products. Cigar wrapper and filler easily get moldy due to the existence of the native bacterial in the material and the moisture storage/production condition. Herein, we investigate the volatile compounds produced during the culture of tobacco using chromatography-ion mobility spectrometry (GC-IMS). 114 and 112 volatile compounds are determined with GC-IMS for the cultured cigar wrapper and cigar filler, respectively. Detailed fingerprint analysis and principal component analysis identify a series of compounds that can be used for the evaluation of the degree of mold development on cigar wrapper/filler. The results reported in this work may provide useful information for the quality evaluation of food products.
RESUMO
Humans spend a third of their lives asleep. While the sleep-wake behaviors are primarily modulated by homeostasis and circadian rhythm, several ambient chemical and physical factors, including light, sound, odor, vibration, temperature, electromagnetic radiation, and ultrasound, also affect sleep and wakefulness. Light at different wavelengths has different effects on sleep and wakefulness. Sound not only promotes but also suppresses sleep; this effect is mediated by certain nuclei, including the pedunculopontine nucleus and inferior colliculus. Certain sleep-promoting odorants regulate sleep through the involvement of the olfactory bulb and olfactory tubercle. In addition, vibrations may induce sleep through the vestibular system. A modest increase in ambient temperature leads to an increase in sleep duration through the involvement of the preoptic area. Electromagnetic radiation has a dual effect on sleep-wake behaviors. The stimulation produced by the ambient chemical and physical factors activates the peripheral sensory system, which converts the chemical and physical stimuli into nerve impulses. This signal is then transmitted to the central nervous system, including several nuclei associated with the modulation of sleep-wake behaviors. This review summarizes the effects of ambient chemical and physical factors on the regulation of sleep and wakefulness, as well as the underlying neurobiological mechanisms.
RESUMO
This study aimed to assess the effectiveness and safety of 5-Fluorouracil (5-Fu) combined with conventional transarterial chemoembolization (cTACE) compared to 5-Fu combined with drug-eluting bead transarterial chemoembolization (DEB-TACE) using CalliSpheres for the treatment of unresectable hepatocellular carcinoma (HCC) using propensity score weighting methods. This retrospective analysis included 131 patients with HCC treated with 5-Fu combined with cTACE (5-Fu-cTACE group, n = 65) or DEB-TACE (5-Fu-DEB-TACE group, n = 66) at the Affiliated Hospital of North Sichuan Medical College from January 2019 to December 2022. Based on the baseline data and laboratory indicators, propensity score weighting was used to reduce confounding bias. Modified response evaluation criteria in solid tumors (mRECIST) were used to evaluate clinical efficacy. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were the disease control rate (DCR), objective response rate (ORR) and adverse events (AEs). PFS was assessed using KaplanâMeier analysis and Cox proportional hazards models. The ORRs at 1 month (M1) after treatment in the 5-Fu-DEB-TACE group and 5-Fu-cTACE group were 90.9% and 76.9%, respectively (P = 0.029), while at this time, the DCRs were 93.9% in the 5-Fu-DEB-TACE group and 90.8% in the 5-Fu-cTACE group (P = 0.494). At 3 months (M3) after treatment, the 5-Fu-DEB-TACE group had a higher ORR (84.8% vs. 56.9%, P < 0.001) and DCR (84.8% vs. 72.3%, P = 0.08). The ORR at 6 months (M6) was also higher in the 5-Fu-DEB-TACE group than in the 5-Fu-cTACE group (72.7% vs. 50.8%, P = 0.01). The median PFS after treatment with 5-Fu-DEB-TACE was longer than that after treatment with 5-Fu-cTACE (11 months vs. 6 months) (P = 0.004). Cox proportional hazards regression analysis indicated that 5-Fu-DEB-TACE (HR = 0.590, P = 0.044), Model for End-Stage Liver Disease (MELD) intermediate risk (HR = 2.470, P = 0.010), BCLC stage B (HR = 2.303, P = 0.036), BCLC stage C (HR = 3.354, P = 0.002) and ascitic fluid (HR = 2.004, P = 0.046) were independent predictors of PFS. No treatment-related deaths occurred in this study. The 5-Fu-DEB-TACE group had a greater incidence of abdominal pain (72.7% vs. 47.7%, P = 0.003). However, the incidence of postoperative elevated transaminase levels was higher in the 5-Fu-cTACE group (83.1% vs. 66.6%, P = 0.031). Subgroups analysis showed patients receiving 5-Fu-DEB-TACE have better PFS compared to those receiving 5-Fu-cTACE in the BCLC stage A group (P = 0.0093), BCLC stage B group (P = 0.0096), multifocal group (P = 0.0056), Child-Pugh stage A group (P<0.001), non- extrahepatic metastasis group (P = 0.022), non-vascular invasion group (P = 0.0093), and the group with a largest tumor diameter ≥ 5 cm (P = 0.0048). At M1, M3, and M6, patients with preserved liver function and in some cases of low tumor burden had higher Objective Response Rate (ORR) and Disease Control Rate (DCR) (P < 0.05). Compared with 5-Fu-cTACE, 5-Fu-DEB-TACE has superior therapeutic efficacy, prolongs PFS, and reduces hepatotoxicity. However, it is associated with an increased incidence of postoperative abdominal pain.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Fluoruracila , Neoplasias Hepáticas , Pontuação de Propensão , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Fluoruracila/administração & dosagem , Fluoruracila/uso terapêutico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Quimioembolização Terapêutica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Resultado do Tratamento , AdultoRESUMO
The release of virulence factors and biofilm formation by Pseudomonas aeruginosa are pivotal drivers of its severe pathogenicity and antibiotic resistance. Based on our prior findings, cyclic di-GMP (c-di-GMP) G-quadruplex inducers are promising biofilm inhibitors and that quorum sensing systems are central regulators of virulence, we aimed to design and synthesize c-di-GMP G-quadruplex inducer-quorum sensing inhibitor hybrids. These hybrids were envisioned as bifunctional agents with both antibiofilm and antivirulence capabilities. Hybrids A7 and A11, characterized by their quinoline and 3-indole rings, emerged as potent inhibitors. They achieve this dual action by inducing c-di-GMP G-quadruplex formation and disrupting the las and pqs signaling system. Additionally, hybrids A7 and A11 attenuated virulence factors and inhibited the motility phenotypes of P. aeruginosa. Furthermore, when tested in in vivo Caenorhabditis elegans infection models, these hybrids, in combination with antibiotics such as tetracycline, improved survival rates, all while maintaining a favorable biosafety profile.
RESUMO
Porous organic cages (POCs) with permanent porosity and excellent host-guest property hold great potentials in regulating ion transport behavior, yet their feasibility as solid-state electrolytes has never been testified in a practical battery. Herein, we design and fabricate a quasi-solid-state electrolyte (QSSE) based on a POC to enable the stable operation of Li-metal batteries (LMBs). Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC, the resulting POC-based QSSE exhibits a high Li+ transference number of 0.67 and a high ionic conductivity of 1.25 × 10-4 S cm-1 with a low activation energy of 0.17 eV. These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h. As a proof of concept, the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85% capacity retention after 1000 cycles. Therefore, our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems, such as Na and K batteries.
RESUMO
Lymphocyte-rich hepatocellular carcinoma (LR-HCC) is a rare variant of HCC characterized by pronounced lymphoid infiltration, providing an opportunity to explore the tumor immune microenvironment (TIME) and its potential impact on disease progression and therapy. This study aimed to describe the clinicopathological features and TIME components of LR-HCC to inform more effective treatment strategies. In this study, we present five novel cases of LR-HCC alongside a comprehensive retrospective analysis of 136 previously documented cases. Immunohistochemical evaluation was utilized to systematically assess TIME components and immune checkpoint inhibitor (ICI) targets. Our findings demonstrated a significant predominance of CD3+ T cells over CD20+ B cells (1.5:1, P < 0.001) and a higher frequency of CD8+ cytotoxic T cells compared to Foxp3+ regulatory T cells (2.4:1, P < 0.001), indicating an immune landscape potentially favorable for immunotherapeutic interventions. Programmed cell death ligand 1 (PD-L1) expression was detected in three out of five cases using the VENTANA SP263 assay, suggesting potential responsiveness to ICIs. A pooled analysis of 38 cases showed a 5-year overall survival rate of 73.6 %, which is notably lower than previously reported rates (>90 %), with 29.4 % of patients experiencing postoperative recurrence or lymph node metastasis. Multivariate analysis identified tumor size as an independent predictor of overall survival. These findings emphasize the relevance of TIME characteristics in understanding LR-HCC and point to promising avenues for targeted and immune-based therapies, contributing to the optimization of clinical management for this distinct cancer subtype.
RESUMO
Environmentally persistent free radicals (EPFRs) and polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in atmospheric particulate matter that are detrimental to human health. This study collected atmospheric particulate matter during and after the spring festival travel season in Tainan, Taiwan, from various locations and analyzed the carbon composition and PAH isomeric ratios to identify the sources. In this study, EPFR concentrations were measured using electron paramagnetic resonance spectroscopy, with the highest concentration found to be 3.04 × 10(12) spins/m3. EPFRs contained predominantly oxygen-centered radicals in PM2.5, which are mainly existed in PM1. The results show that EPFR concentrations on PM, measured per unit volume (spins/m3) or mass (spins/g), were highest during the spring festival travel season. The daily inhalation exposure to the sum of EPFRs and PAHs in PM2.5 was estimated to be equivalent to inhaling 0.11-0.15 cigarette tar EPFRs per day. This report is the first to document EPFRs in environmental atmospheric particulate matters in Taiwan, which has significantly contributed to local air pollution control and reduced exposure risks to public health in Tainan.
RESUMO
Intrinsically disordered regions (IDRs) in proteins can undergo liquid-liquid phase separation (LLPS) for functional assembly, but this increases the chance of forming disease-associated amyloid fibrils. Not all amyloid fibrils form through LLPS however, and the importance of LLPS relative to other pathways in fibril formation remains unclear. We investigated this question in TDP-43, a motor neuron disease and dementia-causing protein that undergoes LLPS, using thioflavin T (ThT) fluorescence, NMR, transmission electron microscopy (TEM), and wide-angle X-ray scattering (WAXS) experiments. Using a fluorescence probe modified from ThT strategically designed for targeting protein assembly rather than ß-sheets and supported by TEM images, we propose that the biphasic ThT signals observed under LLPS-favoring conditions are due to the presence of amorphous aggregates. These aggregates represent an intermediate state that diverges from the direct pathway to ß-sheet-dominant fibrils. Under non-LLPS conditions in contrast (at low pH or at physiological conditions in a construct with key LLPS residues removed), the protein forms a hydrogel. Real-time WAXS data, ThT signals, and TEM images collectively demonstrate that the gelation process circumvents LLPS and yet still results in the formation of fibril-like structural networks. We suggest that the IDR of TDP-43 forms disease-causing amyloid fibrils regardless of the formation pathway. Our findings shed light on why both LLPS-promoting and LLPS-inhibiting mutants are found in TDP-43-related diseases.
RESUMO
OBJECTIVES: To evaluate the relationship between oral health and geriatric disorders, as well as its role in clinical outcomes among acutely admitted older patients. DESIGN: A retrospective observational study was conducted. SETTING: The study was conducted at a medical center in central Taiwan. PARTICIPANTS: A total of 1,141 patients (651 males and 490 females), aged 65 years or older, were admitted due to acute illness with geriatric syndromes from October 1, 2018, to March 31, 2023. MEASUREMENTS: A comprehensive geriatric assessment (CGA) was conducted, covering the comorbidity index, cognitive status, mood, physical function, nutritional status, mobility, health-related quality of life, frailty, and oral health condition. Oral health was evaluated using a bedside oral examination with scores ranging from 8 to 24, where scores of 8-10 indicated normal oral health, 11-14 indicated moderate impairment, and 15-24 indicated severe impairment. The primary outcome observed was in-hospital mortality. RESULTS: Among the participants, 40.5% experienced cognitive impairment, 24.8% exhibited depressive symptoms, 69.4% had low hand grip strength, 36.5% demonstrated low performance in mobility, and 78.9% were at risk of malnutrition. Severe impairment of oral health was found in 18.8% of the participants, while frailty was observed in 85.1%. Stratification of oral health severity revealed differences in various CGA parameters, including comorbidity, polypharmacy, cognitive impairment, depressive mood, physical activity, mobility, nutritional status, and quality of life, as well as clinical outcomes such as length of stay and in-hospital mortality between the groups. In univariable analysis, age, gender, frailty, oral health impairment, comorbidity index, nutritional status, and cognitive and physical functions were all significantly associated with in-hospital mortality. After adjusting for significant factors, severe oral health impairment remained significantly associated with mortality. CONCLUSION: In acutely admitted older patients, oral health was associated with geriatric disorders and was linked to in-hospital mortality. Early intervention in oral health may be necessary to improve outcomes.
RESUMO
HLA-A*02:407 differs from HLA-A*02:01:01:01 by one nucleotide substitution in codon 109 in exon 3.
Assuntos
Alelos , Sequência de Bases , Códon , Éxons , Antígeno HLA-A2 , Teste de Histocompatibilidade , Análise de Sequência de DNA , Humanos , Antígeno HLA-A2/genética , Análise de Sequência de DNA/métodos , Alinhamento de Sequência , Reação em Cadeia da PolimeraseRESUMO
BACKGROUND: Schizophrenic patients are prone to violence, frequent recurrence, and difficult to predict. Emotional and behavioral abnormalities during the onset of the disease, resulting in active myocardial enzyme spectrum. AIM: To explored the expression level of myocardial enzymes in patients with schizophrenia and its predictive value in the occurrence of violence. METHODS: A total of 288 patients with schizophrenia in our hospital from February 2023 to January 2024 were selected as the research object, and 100 healthy people were selected as the control group. Participants' information, clinical data, and laboratory examination data were collected. According to Modified Overt Aggression Scale score, patients were further divided into the violent (123 cases) and non-violent group (165 cases). RESULTS: The comparative analysis revealed significant differences in serum myocardial enzyme levels between patients with schizophrenia and healthy individuals. In the schizophrenia group, the violent and non-violent groups also exhibited different levels of serum myocardial enzymes. The levels of myocardial enzymes in the non-violent group were lower than those in the violent group, and the patients in the latter also displayed aggressive behavior in the past. CONCLUSION: Previous aggressive behavior and the level of myocardial enzymes are of great significance for the diagnosis and prognosis analysis of violent behavior in patients with schizophrenia. By detecting changes in these indicators, we can gain a more comprehensive understanding of a patient's condition and treatment.
RESUMO
Herein, we present a novel approach for the preparation of alkynyl cyclopropa[c]coumarin derivatives with medium to good yields utilizing propargyl sulfonium salts as C1 synthons. Compared with Br-, using ClO4- as the counter anion significantly enhances the yield due to its lesser nucleophilic ability. This method features mild reaction conditions and a broad substrate scope with good diastereoselectivity when the substituted R1 group is at the 5-position of the coumarin scaffold.
RESUMO
A highly effective external photocatalyst- and additive-free method for the phosphorylation of 3,4-dihydroquinoxalin-2(1H)-ones to produce phosphorylated dihydroquinoxalin-2(1H)-ones has been reported. A wide variety of phosphorylated products were formed in good to excellent yields. Preliminary mechanistic studies reveal that the phosphorylation process involves an EnT process, a SET process, a HAT process, and a deprotonation process.
RESUMO
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.