Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206494

RESUMO

Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.

2.
Nanotechnology ; 30(45): 455501, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31357189

RESUMO

In recent years, the development of electronic skin and smart wearable body sensors has put forward high requirements for flexible pressure sensors with high sensitivity and large linear measuring range. However, it turns out to be difficult to increase both of them simultaneously. In this paper, a flexible capacitive pressure sensor based on a porous carbon conductive paste-polydimethylsiloxane composite is reported, the sensitivity and the linear measuring range of which were developed using multiple methods including adjusting the stiffness of the dielectric layer material, fabricating a microstructure and increasing the dielectric permittivity of the dielectric layer. The capacitive pressure sensor reported here has a relatively high sensitivity of 1.1 kPa-1 and a large linear measuring range of 10 kPa, making the product of the sensitivity and linear measuring range 11, which is higher than that of the most reported capacitive pressure sensors to our best knowledge. The sensor has a detection of limit of 4 Pa, response time of 60 ms and great stability. Some potential applications of the sensor were demonstrated, such as arterial pulse wave measuring and breath measuring, which shows it as a promising candidate for wearable biomedical devices. In addition, a pressure sensor array based on the material was also fabricated and it could identify objects in the shape of different letters clearly, which shows promising application in future electronic skins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA