Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1239599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664239

RESUMO

Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the most prevalent diseases, and current treatments rely primarily on opioids, which have significant side effects. However, recent developments in pharmaceutical science have identified several new mechanisms for CIBP, including the targeted modification of certain ion channels and receptors. Ion channels are transmembrane proteins, which are situated on biological cell membranes, which facilitate passive transport of inorganic ions across membranes. They are involved in various physiological processes, including transmission of pain signals in the nervous system. In recent years, there has been an increasing interest in the role of ion channels in chronic pain, including CIBP. Therefore, in this review, we summarize the current literature on ion channels, related receptors, and drugs and explore the mechanism of CIBP. Targeting ion channels and regulating their activity might be key to treating pain associated with bone cancer and offer new treatment avenues.

3.
Biomater Res ; 27(1): 58, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291675

RESUMO

The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.

4.
Aging Dis ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37196131

RESUMO

Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.

5.
Front Pharmacol ; 13: 821940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264958

RESUMO

Ginseng (Panax ginseng C.A. Meyer) is a traditional Oriental herbal drug widely used in East Asia. Its main active ingredients are ginsenosides whose constituents are known to have various pharmacological activities such as anticancer, antinociception, and neuroprotection. The analgesic effects of ginsenosides, such as Rg1, Rg2, and Rb1, as well as compound K, are well known and the analgesic mechanism of action in inflammatory pain models is thought to be the down regulation of pro-inflammatory cytokine expression (TNF-α IL-1ß, and IL-6). Several studies have also demonstrated that ginsenosides regulate neuropathic pain through the modulation of estrogen receptors. Recently, an increasing number of pathways have emerged in relation to the antinociceptive effect of ginseng and ginsenosides. Therefore, this review presents our current understanding of the effectiveness of ginseng in chronic pain and how its active constituents regulate nociceptive responses and their mechanisms of action.

6.
Front Pharmacol ; 12: 653852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959022

RESUMO

In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1ß, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA