Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hypertens Res ; 46(2): 421-436, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36474029

RESUMO

Due to the complicated pathophysiology of cardiac hypertrophy, there are no effective therapies for the treatment of pathological cardiac hypertrophy. Accumulating evidence has demonstrated that circRNAs participate in the pathophysiology of cardiac hypertrophy. In this study, we investigated the regulatory mechanisms of the novel circ_0018553 in angiotensin II (Ang II)-induced cardiac hypertrophy. Circ_0018553 was enriched in endothelial progenitor cell (EPC)-derived exosomes, and circ_0018553 expression was downregulated in a cellular model of Ang II-induced cardiac hypertrophy. Silencing circ_0018553 promoted cardiac hypertrophy in the Ang II-induced cardiac hypertrophy cellular model, while overexpression of circ_0018553 significantly attenuated Ang II-induced cardiac hypertrophy in cardiomyocytes. Moreover, mechanistic studies revealed that circ_0018553 acted as a sponge for miR-4731 and that miR-4731 repressed sirtuin 2 (SIRT2) expression by targeting the 3'UTR of SIRT2. MiR-4731 overexpression promoted cardiac hypertrophy in the Ang II-induced cardiac hypertrophy cellular model, while inhibition of miR-4731 significantly attenuated Ang II-induced cardiac hypertrophy in cardiomyocytes. The rescue experiments showed that miR-4731 overexpression attenuated the protective effects of circ_0018553 overexpression on the cardiac hypertrophy induced by Ang II; SIRT2 silencing also attenuated the protective effects of miR-4731 inhibition on the Ang II-induced cardiac hypertrophy. In conclusion, our results indicated that EPC-derived exosomal circ_0018553 protected against Ang II-induced cardiac hypertrophy by modulating the miR-4731/SIRT2 signaling pathway.


Assuntos
MicroRNAs , Miócitos Cardíacos , RNA Circular , Sirtuína 2 , Humanos , Angiotensina II/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Sirtuína 2/metabolismo , Sirtuína 2/farmacologia , RNA Circular/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35664944

RESUMO

Background: Inflammation and immune response play a key role in myocardial injury and repair after myocardial infarction (MI), while the relevant regulatory mechanisms of immune infiltration in MI have been fully explored. Ferroptosis is an iron-dependent form of regulated cell death characterized by an excessive accumulation of iron and lipid peroxides and involves in the pathogenesis of myocardial infarction. In the present study, by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing, we developed a highly efficient system for screening immunity- and ferroptosis-related biomarkers and immunomodulatory ability of herbal ingredients. Results: Immune infiltration analysis of GSE97320 showed significant neutrophil infiltration in the myocardial infarction group compared to the healthy group, and 807 differentially expressed genes (DEGs) were obtained (526 up-regulated and 281 downregulated). Among these DEGs, 73 immune-related and 8 ferroptosis-related DEGs were obtained. Further protein-protein interaction network analysis revealed 30 hub genes. The DEGs were enriched in a total of 107 biological processes, of which neutrophil-related biological processes were the most significant, enriched in 31 cellular components such as bead-binding hemoglobin complex, hemoglobin complex, and enriched in 36 functions such as bead-binding hemoglobin complex and hemoglobin complex. The DEGs were also enriched in 21 KEGG pathways such as lipid-atherosclerosis and formation of neutrophil extracellular traps. Further analysis identified Toll-like receptor-4 (TLR4) as the key gene, and based on TLR4, 17 herbal ingredients and 6 herbal medicines were predicted by using HERB and Coremine databases. Further molecular docking analysis showed that TLR4 could bind to salvianolic acid b and stigmasterol. The molecular dynamics analysis revealed that TLR4 could bind to salvianolic acid b, stigmasterol, and resveratrol in the stable phase with the binding between TLR4 and salvianolic acid b being the most stable. Conclusions: TLR4 is a key gene that is related to ferroptosis and immune cell infiltration. Further analysis revealed that 17 herbal ingredients and 6 herbal medicines were predicted to have potential interactions with TLR4. These predicted herbal ingredients/medicines may act synergistically to protect against myocardial injury after MI through suppressing neutrophil extracellular traps. The protective effects may be associated with immune cell infiltration and ferroptosis.

3.
Drug Des Devel Ther ; 14: 621-633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32103904

RESUMO

PURPOSE: Dysfunction of endothelial cells plays a key role in the pathogenesis of diabetic atherosclerosis. High glucose (HG) has been found as a key factor in the progression of diabetic complications, including atherosclerosis. PI3K/Akt/eNOS signaling pathway has been shown to involve in HG-induced vascular injuries. Hydrogen sulfide (H2S) has been found to exhibit protective effects on HG-induced vascular injuries. Moreover, H2S activates PI3K/Akt/eNOS pathway in endothelial cells. Thus, the present study aimed to determine if H2S exerts protective effects against HG-induced injuries of human umbilical vein endothelial cells (HUVECs) via activating PI3K/Akt/eNOS signaling. MATERIALS AND METHODS: The endothelial protective effects of H2S were evaluated and compared to the controlled groups. Cell viability, cell migration and tube formation were determined by in vitro functional assays; protein levels were evaluated by Western blot assay and ELISA; cell apoptosis was determined by Hoechst 33258 nuclear staining; Reactive oxygen species (ROS) production was evaluated by the ROS detection kit. RESULTS: HG treatment significantly inhibited PI3K/Akt/eNOS signaling in HUVECs, which was partially reversed by the H2S treatment. HG treatment inhibited cell viability of HUVECs, which were markedly prevented by H2S or PI3K agonist Y-P 740. HG treatment also induced HUVEC cell apoptosis by increasing the protein levels of cleaved caspase 3, Bax and Bcl-2, which were significantly attenuated by H2S or 740 Y-P. ROS production and gp91phox protein level were increased by HG treatment in HUVECs and this effect can be blocked by the treatment with H2S or Y-P 740. Moreover, HG treatment increased the protein levels of pro-inflammatory cytokines, caspase-1 and phosphorylated JNK, which was significantly attenuated by H2S or Y-P 740. Importantly, the cytoprotective effect of H2S against HG-induced injury was inhibited by LY294002 (an inhibitor of PI3K/Akt/eNOS signaling pathway). CONCLUSION: The present study demonstrated that exogenous H2S protects endothelial cells against HG-induced injuries by activating PI3K/Akt/eNOS pathway. Based on the above findings, we proposed that reduced endogenous H2S levels and the subsequent PI3K/Akt/eNOS signaling impairment may be the important pathophysiological mechanism underlying hyperglycemia-induced vascular injuries.


Assuntos
Aterosclerose/prevenção & controle , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Aterosclerose/etiologia , Sobrevivência Celular/efeitos dos fármacos , Complicações do Diabetes/prevenção & controle , Progressão da Doença , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Óxido Nítrico Sintase Tipo III/isolamento & purificação , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA