Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(43): 60954-60967, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34169413

RESUMO

Butyl acrylate is a hazardous and noxious substance (HNS) listed in the top 50 chemicals that is most likely to be involved in HNS spilling incident. At present, information about toxicity effect of butyl acrylate on marine organisms was insufficient, especially on marine microalgae. Phaeodactylum tricornutum (P. tricornutum) and Platymonas subcordiformis (P. subcordiformis) were used as test organism to evaluate the toxic effect of butyl acrylate on their photosynthetic system. Results showed that chlorophyll a (Chl-a) content, the net photosynthetic oxygen evolution rate (NOR), and chlorophyll fluorescence parameters including maximal photochemical efficiency (Fv/Fm), electron transfer rate (ETR), photochemical quenching (qP), and non-photochemical quenching (NPQ) were all stimulated in the toxic dose of 5,10, and 25 mg/L while those were significantly inhibited in the highest concentration of 25 mg/L groups after 96 h. Meanwhile, it was also found that Fv/Fm would be a suitable indicator for evaluating the toxicity of butyl acrylate on the photosynthetic system of two marine microalgae according to the analysis of Pearson correlation coefficient and integrated biomarker response (IBR). Once butyl acrylate enters the marine ecosystem, the toxicity data obtained in this study could be used as a reference for evaluating the effect of butyl acrylate on the photosynthetic capacity of marine microalgae.


Assuntos
Oxigênio , Poluentes Químicos da Água , Acrilatos , Clorofila , Clorofila A , Ecossistema , Fluorescência , Fotossíntese , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Pharmacol ; 85: 103649, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33812013

RESUMO

With the increasing demand for typical hazardous and noxious substances (HNS) in chemical industry, there is an increased leakage risk of these HNS during transportation by vessel and storage nearby seashore. In this study, the acute toxicity of nonylphenol, butyl acrylate and 1, 2-dichloroethane to Phaeodactylum tricornutum (P. tricornutum) and Platymonas subcordiformis (P. subcordiformis), was investigated to assess their ecological risk. The results showed that the three kinds of HNS showed significant time- and dose-dependent patterns on the growth inhibition of two marine microalgae. The 96 h-EC50 of nonylphenol, butyl acrylate and 1, 2-dichloroethane on P. tricornutum was 1.088, 45.908 and 396 mg L-1, respectively, and the 96 h-EC50 of that on P. subcordiformis was 0.851, 52.621 and 389 mg L-1, respectively. It was a common method to evaluate the harm of pollutants to organisms by calculating HC5 value (the minimum pollutant concentration value harmful to 95 % of the studied species, which was no-effect concentration) with Species Sensitivity Distribution (SSD). On the basis of EC50, the ecological risk assessment was further carried out, and HC5 value of nonylphenol and 1, 2-dichloroethane to aquatic organism was 0.079 and 44 mg L-1, respectively.


Assuntos
Acrilatos/toxicidade , Clorófitas/efeitos dos fármacos , Dicloretos de Etileno/toxicidade , Microalgas/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Clorófitas/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Medição de Risco
3.
Environ Toxicol Pharmacol ; 83: 103582, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33444758

RESUMO

To compare the influence of water samples collected from various areas on toxic effect of HNS, we examined the toxic effect of two commonly found HNS: p-chloroaniline and butyl acrylate, on Nannochloropsis oculata cultured in seawater collected from Laizhou bay and Jiaozhou bay (China). The results showed that both p-chloroaniline and butyl acrylate had significant toxic effect on N. oculata cultured in both water samples. P-chloroaniline inhibited its net oxygenation rate and oxygen consumption rate. Butyl acrylate inhibited the net oxygenation rate whereas significantly stimulated oxygen consumption rate. Performance of N. oculata changed between two water samples under same level of p-chloroaniline and butyl acrylate. The net oxygenation rate of N. oculata cultured in the seawater from the Jiaozhou bay increased by 11.60 %, the oxygen consumption rate increased by 26.91 %, algae cell growth decreased by 16.83 %, compared to those from Laizhou bay. The Fv/Fm of N. oculata cultured in Jiaozhou bay was more significantly inhibited at 0.5 and 2.0 mg L-1 p-chloroaniline, while it was significantly inhibited at 5. 0 mg L-1 of butyl acrylate, compared to those from Laizhou bay. Moreover, the toxic effect of both HNS on net oxygenation rate and oxygen consumption rate were significantly attenuated as the concentration increased. The growth inhibition of microalgae cultured in two seawater samples was more evident at 0.5 and 5.0 mg L-1 p-chloroaniline than at 2.0 mg L-1 p-chloroaniline,and the growth inhibition of microalgae cultured in two seawater samples was more evident at 2.0 and 5.0 mg L-1 butyl acrylate than at 0.5 mg L-1 butyl acrylate. These results indicated that toxic effect of p-chloroaniline and butyl acrylate on the growth of N. oculata was influenced by the pollutants in the two water samples. Consequently, a corresponding research on water sample is required in advance to increase accuracy of future ecological risk assessment of HNS.


Assuntos
Acrilatos/toxicidade , Compostos de Anilina/toxicidade , Microalgas/efeitos dos fármacos , Estramenópilas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microalgas/crescimento & desenvolvimento , Água do Mar , Estramenópilas/crescimento & desenvolvimento
4.
Ecotoxicol Environ Saf ; 189: 109995, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785947

RESUMO

The use of p-chloroaniline (PCA) in various aspects leads to its existence and accumulation in the environment. Relevant researches showed that PCA was a prime toxic pollutant that had imposed a serious risk to public health and the environment. This paper investigated the toxicity effects of PCA on Platymonas subcordiformis (P. subcordiformis) and the biodegradation of PCA by the marine microalga. In the toxicity experiments, the EC50 of PCA on P. subcordiformis at 24 h, 48 h, 72 h and 96 h was 41.42, 24.04, 17.15 and 13.05 mg L-1, respectively. The pigment parameters including chlorophyll a, chlorophyll b, carotenoids, photosynthetic O2 release rate, respiration O2 consumption rate and the chlorophyll fluorescence parameters including Fv/Fm, ETR and qP decreased greatly while antioxidant enzyme activities (SOD, CAT) and the chlorophyll fluorescence parameter NPQ increased when P. subcordiformis exposed to PCA compared with the control group. Fv/Fm would be a suitable indicator for assessing the toxicity of PCA in marine environment based on the analysis of Pearson's correlation coefficient and Integrated Biomarker Response (IBR). The degradation assay in P. subcordiformis indicated that the green marine microalga had the ability to remove and degrade PCA, and the order of removal and degradation proportion of PCA was 2 mg L-1 > 5 mg L-1>10 mg L-1. The maximum removal and biodegradation percentage was 54% and 34%, respectively.


Assuntos
Compostos de Anilina/toxicidade , Clorófitas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Compostos de Anilina/metabolismo , Biodegradação Ambiental , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Clorófitas/metabolismo , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA