Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743285

RESUMO

OBJECTIVE: To compare the efficacy (including blood pressure, medication reduction, serum potassium, and clinical success) and safety parameters (including operative time, length of hospital stay, blood loss, hypertension crisis rate, and complication rate) of radiofrequency ablation (RFA) and laparoscopic adrenalectomy (LA) in the treatment of primary aldosteronism (PA). METHODS: Literature search was performed on PubMed, EMBASE, The Cochrane Library (Issue 8, 2023), Web of Science, China National Knowledge Infrastructure, and Wanfang from inception to August 2023. Study selection, data extraction, and risk of bias assessment were performed by two independent reviewers. Quality assessment was conducted using the Newcastle-Ottawa scale. The Stata 12.0 software was used for statistical analyses. Pooled odds ratios (OR) with corresponding 95% confidence interval (CI) were calculated for categorical outcomes, while mean difference (MD) with corresponding 95% CI were calculated for continuous outcomes. RESULTS: A total of 5 studies involving 204 patients (LA, n = 127; and RAF, n = 77) were included. LA had better diastolic blood pressure control than RFA (WMD = 5.19; 95% CI 0.96-9.43); however, the RFA demonstrated better shorter operative time (WMD = - 57.99; 95% CI - 116.54 to 0.57), and shorter length of hospital stay (OR - 1.6; 95% CI - 2.37 to - 0.83) compared to LA. All remaining parameters were comparable between the interventions. CONCLUSION: While grossly comparable in efficacy as treatment options for PA, RFA may allow for shorter operative time and hospital stay, less intraoperative blood loss, and lower hospitalization costs. However, LA has better diastolic blood pressure control. Even so, we still need larger prospective studies, specifically with comparative hypertension response (short and long term) and number of post-procedural antihypertensive medication requirement.

2.
Nat Commun ; 15(1): 836, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282040

RESUMO

The Gabija system is a newly discovered bacterial immune system that consists of GajA and GajB. Here we report the cryo-EM structure of the Gabija complex from Bacillus cereus VD045 at 3.6 Å, which provides the direct evidence of interactions between GajA and GajB. The Gabija complex is an octameric ring structure with four GajA and four GajB. GajA is an OLD nucleases family protein, while GajB belongs to the SF1 helicases. The Gabija complex has sequence-specific DNA nuclease activity and prefers circular rather than linear DNA as substrate, its activity is more sensitive to concentrations change of nucleotides compared to GajA alone. Our data suggest a mechanism of Gabija immunity: the nuclease activity of Gabija complex is inhibited under physiological conditions, while it is activated by depletion of NTP and dNTP upon the replication and transcription of invading phages and cleave the circular DNA to prevent phage DNA replication.


Assuntos
Bacteriófagos , DNA , DNA/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacillus cereus/metabolismo , Endonucleases , Sistema Imunitário/metabolismo
3.
FEBS J ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103336

RESUMO

Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.

4.
Arch Biochem Biophys ; 737: 109556, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863693

RESUMO

To cope with the requirements of energy and building blocks for rapid proliferation, cancer cells reprogram their metabolic pathways profoundly, especially in oxygen- and nutrients-deficient tumor microenvironments. However, functional mitochondria and mitochondria-dependent oxidative phosphorylation are still necessary for the tumorigenesis and metastasis of cancer cells. We show here that mitochondrial elongation factor 4 (mtEF4) is commonly upregulated in breast tumors compared to adjacent non-cancerous tissues, and is relevant to tumor progression and poor prognosis. Down regulation of mtEF4 in breast cancer cells impairs the assembly of mitochondrial respiration complexes, decreases mitochondrial respiration, reduces ATP production, attenuates the formation of lamellipodia, and suppresses cell motility in vitro and cancer metastasis in vivo. On the contrary, upregulation of mtEF4 elevates the mitochondrial oxidative phosphorylation, which contributes to the migratory capacities of breast cancer cells. mtEF4 also increases the potential of glycolysis, probably via an AMPK-related mechanism. In summary, we provide direct evidences that the aberrantly upregulated mtEF4 contributes to the metastasis of breast cancer by coordinating metabolic pathways.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fatores de Alongamento de Peptídeos/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Glicólise , Fosforilação Oxidativa , Linhagem Celular Tumoral , Microambiente Tumoral , Melanoma Maligno Cutâneo
6.
Bioresour Technol ; 364: 127915, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089128

RESUMO

Global mushroom production is growing rapidly, raising concerns about polluting effects of spent mushroom substrate (SMS) and interest in uses in composts. In this study, SMS composting trials and high-throughput sequencing were carried out to investigate to better understand how the structure, co-occurrence patterns, and functioning of bacterial and fungal communities vary through compost time and across environmental conditions. The results suggested that both bacterial and fungal microbiota displayed significant variation in community composition across different composting stages. Enzyme activity levels showed both directional and fluctuating changes during composting, and the activity dynamics of carboxymethyl cellulase, polyphenol oxidase, laccase, and catalase correlated significantly with the succession of microbial community composition. The co-occurrence networks are "small-world" and modularized and the topological properties of each subnetwork were significantly influenced by the environmental factors. Finally, seed germination and seedling experiments were performed to verify the biosafety and effectiveness of the final composting products.

7.
Proc Natl Acad Sci U S A ; 119(23): e2200363119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653569

RESUMO

The nanomaterial­protein "corona" is a dynamic entity providing a synthetic­natural interface mediating cellular uptake and subcellular distribution of nanomaterials in biological systems. As nanomaterials are central to the safe-by-design of future nanomedicines and the practice of nanosafety, understanding and delineating the biological and toxicological signatures of the ubiquitous nanomaterial­protein corona are precursors to the continued development of nano­bio science and engineering. However, despite well over a decade of extensive research, the dynamics of intracellular release or exchange of the blood protein corona from nanomaterials following their cellular internalization remains unclear, and the biological footprints of the nanoparticle­protein corona traversing cellular compartments are even less well understood. To address this crucial bottleneck, the current work screened evolution of the intracellular protein corona along the endocytotic pathway from blood via lysosomes to cytoplasm in cancer cells. Intercellular proteins, including pyruvate kinase M2 (PKM2), and chaperones, displaced some of the initially adsorbed blood proteins from the nanoparticle surface, which perturbed proteostasis and subsequently incited chaperone-mediated autophagy (CMA) to disrupt the key cellular metabolism pathway, including glycolysis and lipid metabolism. Since proteostasis is key to the sustainability of cell function, its collapse and the resulting CMA overdrive spell subsequent cell death and aging. Our findings shed light on the consequences of the transport of extracellular proteins by nanoparticles on cell metabolism.


Assuntos
Nanoestruturas , Coroa de Proteína , Coroa de Proteína/metabolismo , Proteômica , Proteostase , Piruvato Quinase/metabolismo
8.
Adv Sci (Weinh) ; 9(10): e2104341, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122408

RESUMO

Bacterial vaginosis (BV) is the most common vaginal infection found in women in the world. Due to increasing drug-resistance of virulent pathogen such as Gardnerella vaginalis (G. vaginalis), more than half of BV patients suffer recurrence after antibotics treatment. Here, metastable iron sulfides (mFeS) act in a Gram-dependent manner to kill bacteria, with the ability to counteract resistant G. vaginalis for BV treatment. With screening of iron sulfide minerals, metastable Fe3 S4 shows suppressive effect on bacterial growth with an order: Gram-variable G. vaginalis >Gram-negative bacteria>> Gram-positive bacteria. Further studies on mechanism of action (MoA) discover that the polysulfide species released from Fe3 S4 selectively permeate bacteria with thin wall and subsequently interrupt energy metabolism by inhibiting glucokinase in glycolysis, and is further synergized by simultaneously released ferrous iron that induces bactericidal damage. Such multiple MoAs enable Fe3 S4 to counteract G. vaginalis strains with metronidazole-resistance and persisters in biofilm or intracellular vacuole, without developing new drug resistance and killing probiotic bacteria. The Fe3 S4 regimens successfully ameliorate BV with resistant G. vaginalis in mouse models and eliminate pathogens from patients suffering BV. Collectively, mFeS represent an antibacterial alternative with distinct MoA able to treat challenged BV and improve women health.


Assuntos
Gardnerella vaginalis , Vaginose Bacteriana , Animais , Biofilmes , Feminino , Compostos Ferrosos , Humanos , Metronidazol/farmacologia , Camundongos , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia
9.
Front Cell Dev Biol ; 9: 687559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368135

RESUMO

Protein posttranslational modifications play important roles in cardiovascular diseases. The authors' previous report showed that the abundance of succinylated and glutarylated proteins was significantly lower in the serum of patients with acute myocardial infarction (AMI) than in that of healthy volunteers, suggesting a potential relationship between protein acylation and AMI. Sirtuin 5 (SIRT5) facilitates the removal of malonyl, succinyl, and glutaryl modification; however, its effects on AMI remain unknown. In this study, the levels of SIRT5 in AMI mouse model was compared. Results showed elevated hepatic SIRT5 after myocardial infarction. Hepatocyte-specific SIRT5 overexpressing mice (liver SIRT5 OE) were generated to address the possible involvement of hepatic SIRT5 in AMI. The areas of myocardial infarction, myocardial fibrosis, and cardiac function in a model of experimental myocardial infarction were compared between liver SIRT5 OE mice and wild-type (WT) mice. The liver SIRT5 OE mice showed a significantly smaller area of myocardial infarction and myocardial fibrosis than the WT mice. The fibroblast growth factor 21 (FGF21) in the blood and myocardium of liver SIRT5 OE mice after AMI was markedly elevated compared with that in WT mice. The results of mass spectrometry showed increased levels of proteins regulating tricarboxylic acid cycle, oxidative phosphorylation, and fatty acid ß-oxidation pathways in the liver mitochondria of liver SIRT5 OE mice. These findings showed that SIRT5 may exhibit a cardioprotective effect in response to acute ischemia through a liver-cardiac crosstalk mechanism, probably by increasing the secretion of FGF21 and the improvement of energy metabolism.

10.
Genome Biol ; 22(1): 229, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404448

RESUMO

BACKGROUND: Liquid-liquid phase separation (LLPS) is an important organizing principle for biomolecular condensation and chromosome compartmentalization. However, while many proteins have been reported to undergo LLPS, quantitative and global analysis of chromatin LLPS property remains absent. RESULTS: Here, by combining chromatin-associated protein pull-down, quantitative proteomics and 1,6-hexanediol (1,6-HD) treatment, we develop Hi-MS and define an anti-1,6-HD index of chromatin-associated proteins (AICAP) to quantify 1,6-HD sensitivity of chromatin-associated proteins under physiological conditions. Compared with known physicochemical properties involved in phase separation, we find that proteins with lower AICAP are associated with higher content of disordered regions, higher hydrophobic residue preference, higher mobility and higher predicted LLPS potential. We also construct BL-Hi-C libraries following 1,6-HD treatment to study the sensitivity of chromatin conformation to 1,6-HD treatment. We find that the active chromatin and high-order structures, as well as the proteins enriched in corresponding regions, are more sensitive to 1,6-HD treatment. CONCLUSIONS: Our work provides a global quantitative measurement of LLPS properties of chromatin-associated proteins and higher-order chromatin structure. Hi-MS and AICAP data provide an experimental tool and quantitative resources valuable for future studies of biomolecular condensates.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Glicóis/farmacologia , Condensados Biomoleculares , Cromatina/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Glicóis/química , Humanos , Análise de Sequência de Proteína
11.
Front Bioeng Biotechnol ; 9: 635504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959594

RESUMO

Atherosclerosis is the basic pathological process of many diseases, such as coronary atherosclerosis and stroke. Nutrients can affect the occurrence and development of atherosclerosis. At present, in nutrition science, the research on atherosclerosis focuses on which nutrients play an important role in its prevention strategy, and what are the possible mechanisms of its action. In the current study, the process of atherosclerosis can be affected by adjusting the proportion of nutrients in the diet. In this review, we pay attention to the effects of phytosterols, omega-3-polyunsaturated fatty acids, polyphenol, vitamin, and other nutrients on atherosclerosis, pay attention to their current epidemiological status, current nutritional research results, and prevention or a possible mechanism to reduce the risk of development of atherosclerosis. So that more personalized nutritional approaches may be more effective in terms of nutritional intervention responses to atherosclerosis.

12.
Adv Sci (Weinh) ; 8(6): 2004032, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747748

RESUMO

Obesity and its related complications pose an increasing threat to human health; however, targetable obesity-related membrane receptors are not yet elucidated. Here, the membrane receptor CD146 is demonstrated to play an essential role in obesity. In particular, CD146 acts as a new adipose receptor for angiopoietin-like protein 2 (ANGPTL2), which is thought to act on endothelial cells to activate adipose inflammation. ANGPTL2 binds to CD146 to activate cAMP response element-binding protein (CREB), which then upregulates CD146 during adipogenesis and adipose inflammation. CD146 is present in preadipocytes and mature adipocytes, where it is mediated by its ligands ANGPTL2 and galectin-1. In preadipocytes, CD146 ablation suppresses adipogenesis, whereas the loss of CD146 in mature adipocytes suppresses lipid accumulation and enhances energy expenditure. Moreover, anti-CD146 antibodies inhibit obesity by disrupting the interactions between CD146 and its ligands. Together, these findings demonstrate that ANGPTL2 directly affects adipocytes via CD146 to promote obesity, suggesting that CD146 can be a potential target for treating obesity.

13.
J Ethnopharmacol ; 277: 114036, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753145

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bitter melon, Momordica charantia L. (MC), is an ethnomedicinal plant cultivated in different climes. It's cytotoxic effect on several cancer cell lines has been evaluated. However, there have been contrasting reports on the actual mechanism (s) involved in the observed cell death induced by MC. AIMS OF THE STUDY: To probe the mechanism of cell death induction in MDA-MB-436 (Breast) and A549 (lung) cancer cell lines treated with fractions (ethyl acetate, dichloromethane and hexane) derived from the aqueous extract of MC. MATERIALS AND METHODS: Aqeous extract of the leaves of MC were fractionated using solvents of different polarities (ethyl acetate (D3), n-hexane (D4), dichloromethane (D5)). The cells were incubated with 100 and 125 µg/mL of the fractions 24 hours. Combination of fluorescence microscopy, enzyme assays, Western blot analyses and flow cytometry were employed in the study. RESULTS: Treatment of the cells with MC fractions reduced Mitochondrial Membrane Potential (MMP) and intracellular ATP levels, while increasing reactive oxygen species levels without classical biochemical and morphological apoptotic features were seen. However, the fractions failed in upregulating either caspase-3 activation or cytochrome c release in the cancer cells. CONCLUSION: Overall, these results suggest that the cytotoxic effect of MC on the selected cancer cells is mediated by loss of mitochondrial function via loss of respiration leading to cell death rather than by the classical release of cytochrome c or caspase-3 activated apoptosis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Momordica charantia/química , Extratos Vegetais/farmacologia , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Eur J Pharmacol ; 895: 173866, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33454376

RESUMO

Metastatic breast cancer is a significant contributor to mortality among women, but its complex regulation represents a barrier to precision targeting. In the present study, a graphene-based nanocomposite which probes and selectively inhibits cancer cell motility is described. By controllable coupling of prenylated chalcone xanthohumol, an efficient inhibitor of mitochondrial electron transport chain complex I, with PEGylated graphene oxide nanosheet, a PEG-GO@XN nanocomposite with good stability and biocompatibility is synthesized. PEG-GO@XN is capable of inhibiting mitochondrial oxidative phosphorylation selectively in MDA-MB-231 and MDA-MB-436 metastatic breast cancer cells. PEG-GO@XN reduces the production of ATP, impairs the formation of F-actin cytoskeleton in the lamellipodia, and blocks the migration and invasion of breast cancer cells in vitro, without interfering the proliferation and metabolism of non-cancerous cells. More importantly, PEG-GO@XN suppresses the metastasis of MDA-MB-231 cells to lung in nude mice. PEG-GO@XN abolishes the TGF-ß1-induced down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin, Snail and Twist, thus causes the maintenance of "epithelial-like" rather than the "mesenchymal-like" features, and decreases the motility potential of breast cancer cells. Taken together, this research unveils the enormous potential of PEG-GO@XN to suppress metastatic breast cancer by selective targeting oxidative phosphorylation and epithelial-mesenchymal transition of cancer cells and thereby providing insights on metastatic cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Nanocompostos , Fosforilação Oxidativa/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Composição de Medicamentos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Invasividade Neoplásica , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sci Signal ; 13(659)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234690

RESUMO

Overuse of ß2-adrenoceptor agonist bronchodilators evokes receptor desensitization, decreased efficacy, and an increased risk of death in asthma patients. Bronchodilators that do not target ß2-adrenoceptors represent a critical unmet need for asthma management. Here, we characterize the utility of osthole, a coumarin derived from a traditional Chinese medicine, in preclinical models of asthma. In mouse precision-cut lung slices, osthole relaxed preconstricted airways, irrespective of ß2-adrenoceptor desensitization. Osthole administered in murine asthma models attenuated airway hyperresponsiveness, a hallmark of asthma. Osthole inhibited phosphodiesterase 4D (PDE4D) activity to amplify autocrine prostaglandin E2 signaling in airway smooth muscle cells that eventually triggered cAMP/PKA-dependent relaxation of airways. The crystal structure of the PDE4D complexed with osthole revealed that osthole bound to the catalytic site to prevent cAMP binding and hydrolysis. Together, our studies elucidate a specific molecular target and mechanism by which osthole induces airway relaxation. Identification of osthole binding sites on PDE4D will guide further development of bronchodilators that are not subject to tachyphylaxis and would thus avoid ß2-adrenoceptor agonist resistance.


Assuntos
Asma , Cumarínicos , Animais , Asma/tratamento farmacológico , Cumarínicos/metabolismo , Cumarínicos/uso terapêutico , Medicamentos de Ervas Chinesas , Humanos , Pulmão/metabolismo , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Cell Death Dis ; 11(9): 732, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908124

RESUMO

The differentiation of myoblasts plays a key role in the growth of biological individuals and the reconstruction of muscle tissue. Several microRNAs are significantly upregulated during the differentiation of myoblasts and their target genes have been explored. However, the molecular mechanisms underlying the transcriptional regulation of microRNAs remain elusive. In the present study, we found that the expression of miR-133a is increased during the differentiation of C2C12 myoblasts. miR-133a mimic is sufficient to induce the biogenesis of mitochondria and differentiation of C2C12 myoblasts whereas miR-133a inhibitor abolishes cell differentiation. Using CRISPR affinity purification in situ of regulatory elements (CAPTURE) technique, we further dissected the regulatory mechanisms of miR-133a expression and found that KAP1-associated transcription complex accounts for the suppression of miR-133a in C2C12 myoblasts. Knockdown of KAP1 increased the expression of miR-133a, which contributed to the biogenesis of mitochondria and differentiation of C2C12 myoblasts. To our knowledge, this is the first study using the CAPTURE technology to identify the regulatory factors of miR-133a during cell differentiation, which may provide new ideas for understanding the precision regulatory machinery of microRNAs during different biological processes.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mioblastos/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Camundongos , Mioblastos/citologia , Biogênese de Organelas , Transfecção
17.
Theranostics ; 10(1): 179-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903114

RESUMO

Background: Alzheimer's disease (AD) currently lacks a cure. Because substantial neuronal damage usually occurs before AD is advanced enough for diagnosis, the best hope for disease-modifying AD therapies likely relies on early intervention or even prevention, and targeting multiple pathways implicated in early AD pathogenesis rather than focusing exclusively on excessive production of ß-amyloid (Aß) species. Methods: Coniferaldehyde (CFA), a food flavoring and agonist of NF-E2-related factor 2 (Nrf2), was selected by multimodal in vitro screening, followed by investigation of several downstream effects potentially involved. Furthermore, in the APP/PS1 AD mouse model, the therapeutic effects of CFA (0.2 mmol kg-1d-1) were tested beginning at 3 months of age. Behavioral phenotypes related to learning and memory capacity, brain pathology and biochemistry, including Aß transport, were assessed at different time intervals. Results: CFA promoted neuron viability and showed potent neuroprotective effects, especially on mitochondrial structure and functions. In addition, CFA greatly enhanced the brain clearance of Aß in both free and extracellular vesicle (EV)-contained Aß forms. In the APP/PS1 mouse model, CFA effectively abolished brain Aß deposits and reduced the level of toxic soluble Aß peptides, thus eliminating AD-like pathological changes in the hippocampus and cerebral cortex and preserving learning and memory capacity of the mice. Conclusion: The experimental evidence overall indicated that Nrf2 activation may contribute to the potent anti-AD effects of CFA. With an excellent safety profile, further clinical investigation of coniferaldehyde might bring hope for AD prevention/therapy.


Assuntos
Acroleína/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Acroleína/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/patologia
18.
Proteomics Clin Appl ; 14(1): e1900103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532912

RESUMO

PURPOSE: To identify protein malonylation, succinylation, and glutarylation in human and rat serum. EXPERIMENTAL DESIGN: Immunoprecipitation coupled with MS/MS is employed to compare the relative abundance of malonylation, succinylation, and glutarylation of serum protein in acute myocardial infarction human and rat. RESULTS: One hundred thirty and 48 unique malonylated, succinylated, or glutarylated peptides are found in human and rat serum, respectively. Succinylation is the most predominant modification. The most modified protein is albumin. Abundance of serum protein succinylation and glutarylation is significantly (p < 0.05) lower in the peripheral serum of ST-segment elevation myocardial infarction patients compared with healthy volunteers, which is also observed in acute myocardial infarction rats. CONCLUSIONS AND CLINICAL RELEVANCE: Malonylation, succinylation, and glutarylation widely exist in mammalian serum proteins, and may reveal novel mechanism of acute myocardial infarction.


Assuntos
Proteínas Sanguíneas/genética , Infarto do Miocárdio/sangue , Processamento de Proteína Pós-Traducional/genética , Proteômica , Sequência de Aminoácidos , Animais , Biologia Computacional , Glutaratos/metabolismo , Humanos , Malonatos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Ratos , Ácido Succínico/metabolismo
19.
Nano Lett ; 19(10): 6937-6944, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31558028

RESUMO

The permeabilization of organelle membranes by BCL-2 family proteins is a pivotal step during the regulation of apoptosis; the underlying mechanisms remain unclear. Based on the fluorescence attenuation by graphene oxide, we developed a single-molecule imaging method termed surface-induced fluorescence attenuation (smSIFA), which enabled us to track both vertical and lateral kinetics of singly labeled BCL-2 family protein tBid during membrane permeabilization. We found that tBid monomers lie shallowly on the lipid bilayer, where they self-assemble to form oligomers. During the initiation phase of self-assembly, the two central hydrophobic helices (α6 and α7) of tBid insert halfway into the phospholipid core, while the other helices remain on the surface. In oligomerized tBid clusters, α6 and α7 prefer to float up, and the other helices may sink to the bottom of the membrane and cause the formation of transient two-dimensional, micelle-like pore structures, which are responsible for the permeabilization of membranes and the induction of apoptosis. Our results shed light on the understanding of tBid-induced apoptosis, and this nanotechnology-based smSIFA approach could be used to dissect the kinetic interaction between membrane protein and lipid bilayer at the single-molecule level with subnanometer precision.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Bicamadas Lipídicas/química , Animais , Permeabilidade da Membrana Celular , Fluorescência , Grafite/química , Camundongos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Multimerização Proteica
20.
Cell Death Dis ; 10(9): 670, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511493

RESUMO

Transforming growth factor (TGF)-ß1, a main profibrogenic cytokine in the progression of idiopathic pulmonary fibrosis (IPF), induces differentiation of pulmonary fibroblasts to myofibroblasts that produce high levels of collagen, leading to concomitantly loss of lung elasticity and function. Recent studies implicate the importance of microRNAs (miRNAs) in IPF but their regulation and individual pathological roles remain largely unknown. We used both RNA sequencing and quantitative RT-PCR strategies to systematically study TGF-ß1-induced alternations of miRNAs in human lung fibroblasts (HFL). Our data show that miR-133a was significantly upregulated by TGF-ß1 in a time- and concentration-dependent manner. Surprisingly, miR-133a inhibits TGF-ß1-induced myofibroblast differentiation whereas miR-133a inhibitor enhances TGF-ß1-induced myofibroblast differentiation. Interestingly, quantitative proteomics analysis indicates that miR-133a attenuates myofibroblast differentiation via targeting multiple components of TGF-ß1 profibrogenic pathways. Western blot analysis confirmed that miR-133a down-regulates TGF-ß1-induced expression of classic myofibroblast differentiation markers such as ɑ-smooth muscle actin (ɑ-SMA), connective tissue growth factor (CTGF) and collagens. miRNA Target Searcher analysis and luciferase reporter assays indicate that TGF-ß receptor 1, CTGF and collagen type 1-alpha1 (Col1a1) are direct targets of miR-133a. More importantly, miR-133a gene transferred into lung tissues ameliorated bleomycin-induced pulmonary fibrosis in mice. Together, our study identified TGF-ß1-induced miR-133a as an anti-fibrotic factor. It functions as a feed-back negative regulator of TGF-ß1 profibrogenic pathways. Thus, manipulations of miR-133a expression may provide a new therapeutic strategy to halt and perhaps even partially reverse the progression of IPF.


Assuntos
Diferenciação Celular/genética , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Bleomicina/toxicidade , Diferenciação Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Células HEK293 , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miofibroblastos/efeitos dos fármacos , Células NIH 3T3 , Proteômica , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA