Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985950

RESUMO

Recently, scientists have been facing major obstacles in terms of improving the performances of dielectric materials for triboelectric nanogenerators. The triboelectric nanogenerator (TENG) is one of the first green energy technologies that can convert random mechanical kinetic energy into electricity. The surface charge density of TENGs is a critical factor speeding up their commercialization, so it is important to explore unique methods to increase the surface charge density. The key to obtaining a high-performance TENG is the preparation of dielectric materials with good mechanical properties, thermal stability and output performance. To solve the problem of the low output performance of PI-based triboelectric nanogenerators, we modified PI films by introducing nanomaterials and designed a new type of sandwich-shaped nanocomposite film. Herein, we used polyimide (PI) with ideal mechanical properties, excellent heat resistance and flexibility as the dielectric material, prepared an A-B-A sandwich structure with PI in the outer layer and modified a copper calcium titanate/polyimide (CCTO/PI) storage layer in the middle to improve the output of a TENG electrode. The doping amount of the CCTO was tailored. The results showed that at 8 wt% CCTO content, the electrical output performance was the highest, and the open-circuit voltage of CCTO/PI was 42 V. In the TENG, the open-circuit voltage, short-circuit current and transfer charge of the prepared sandwich-structured film were increased by 607%, 629% and 672% compared to the TENG with the PI thin film, respectively. This study presents a novel strategy of optimizing dielectric materials for triboelectric nano-generators and has great potential for the future development of high output-performance TENGs.

2.
Materials (Basel) ; 15(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36143609

RESUMO

Owing to its lack of crosslinking, polypropylene (PP) is considered an environmentally friendly alternative to crosslinked polyethylene as high-voltage direct current (HVDC) cable insulation. However, pure PP can accumulate space charges under a HVDC, and thus must be modified for use as an insulating material for HVDC cables. In this study, 4-methylstyrene is grafted onto PP using an aqueous suspension grafting method to improve its properties. The effects of the swelling time, reaction time, and 4-methylphenylene concentration on the reaction were investigated. The optimum process conditions were determined, including an optimum grafting ratio of 0.97%. The volume resistivity, ability to suppress space-charge accumulation, and DC breakdown strength of modified PP were also studied. Modified PP with a grafting ratio of 0.88% showed optimal space-charge suppression and the highest volume resistivity and breakdown strength. The work will facilitate the design and development of more efficient insulation materials for HVDC cables.

3.
RSC Adv ; 10(30): 17816-17828, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35515612

RESUMO

In this work, two new bis-Schiff bases, namely 2-bromoisophthalaldehyde-2-aminofluorene (M1) and glutaraldehyde 2-aminofluorene (M2), were synthesized, and their structures were characterized and confirmed by infrared spectroscopy, Fourier transform mass spectrometry and UV-visible spectroscopy. Their corrosion inhibition performance on carbon steel in simulated circulating cooling water was investigated by weight loss measurements and electrochemical measurements. The potentiodynamic polarization curves confirmed that two bis-Schiff bases are anode-type inhibitors; electrochemical impedance spectroscopy tests showed that M1 and M2 possess the best inhibition efficiencies of 96.25% and 99.15% at the optimal concentration of 2.50 mmol L-1, respectively. The weight loss results showed that M1 and M2 exhibit maximum η w values of 92.62% and 96.31%, respectively. Scanning electron microscopy showed that the inhibitors inhibited carbon steel corrosion. The adsorption isotherm measurements indicated that the two inhibitors exhibited physicochemisorption mechanisms and followed Langmuir adsorption isotherms. The relationships between the molecular structure and inhibition behavior of the inhibitors were explored by density functional theory, frontier molecular orbital studies, and Fukui index analysis, which affirmed that M2 possesses higher corrosion inhibition efficiency than M1.

4.
RSC Adv ; 10(50): 29923-29934, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518252

RESUMO

Two unreported metal-organic frameworks [Cu(6-Me-2,3-pydc)(1,10-phen)·7H2O] n (namely Cu-MOF) and [Mn2(2,2'-bca)2(H2O)2] n (namely Mn-MOF) were synthesized by a solvothermal method and their structures were characterized and confirmed by elemental analysis, X-ray single crystal diffraction, Fourier infrared spectroscopy and thermogravimetric analysis. Cu-MOF/graphene (Cu-MOF/GR), Cu-MOF/graphene oxide (Cu-MOF/GO), Mn-MOF/graphene (Mn-MOF/GR) and Mn-MOF/graphene oxide (Mn-MOF/GO) composite materials were successfully synthesized by a solvothermal method and characterized and analyzed by PXRD, SEM and TEM. In order to study the corrosion inhibition properties of the Cu-MOF/GR, Cu-MOF/GO, Mn-MOF/GR and Mn-MOF/GO composite materials on carbon steel, they were mixed with waterborne acrylic varnish to prepare a series of composite coatings to explore in 3.5 wt% NaCl solution by electrochemical measurements and results showed that the total polarization resistance of the 3% Cu-MOF/GO and 3% Mn-MOF/GO composite coatings on the carbon steel surface were relatively large, and were 55 097 and 55 729 Ω cm2, respectively, which could effectively protect the carbon steel from corrosion. After immersion for 30 days, the 3% Mn-MOF/GO composite still maintained high corrosion resistance, the |Z| values were still as high as 23 804 Ω cm2. Therefore, MOFs compounded with GO can produce a synergistic corrosion inhibition effect and improve the corrosion resistance of the coating; this conclusion is well confirmed by the adhesion capability test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA