Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(10): 404, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283329

RESUMO

The emergence of the "super fungus" Candida auris poses a significant threat to human health, given its multidrug resistance and high mortality rates. Therefore, developing a new antifungal strategy is necessary. Our previous research showed that Baicalein (BE), a key bioactive compound from the dried root of the perennial herb Scutellaria baicalensis Georgi, has strong fungistatic properties against C. auris. Nevertheless, the antifungal activity of BE against C. auris and its mechanism of action requires further investigation. In this study, we explored how BE affects this fungus using various techniques, including scanning electron microscopy (SEM), Annexin V-FITC apoptosis detection, CaspACE FITC-VAD-FMK In Situ Marker, reactive oxygen species (ROS) assay, singlet oxygen sensor green (SOSG) fluorescent probe, enhanced mitochondrial membrane potential (MMP) assay with JC-1, DAPI staining, TUNEL assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Our findings revealed that BE induced several apoptotic features, including phosphatidylserine (PS) externalization, metacaspase activation, nuclear condensation and DNA fragmentation. BE also increased intracellular ROS levels and altered mitochondrial functions. Additionally, transcriptomic analysis and RT-qPCR validation indicated that BE may induce apoptosis in C. auris by affecting ribosome-related pathways, suggesting that ribosomes could be new targets for antifungal agents, in addition to cell walls, membranes, and DNA. This study emphasizes the antifungal activity and mechanism of BE against C. auris, offering a promising treatment strategy for C. auris infection.


Assuntos
Antifúngicos , Apoptose , Candida , Flavanonas , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Ribossomos , Flavanonas/farmacologia , Apoptose/efeitos dos fármacos , Candida/efeitos dos fármacos , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Humanos
2.
Arch Microbiol ; 206(8): 349, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992278

RESUMO

Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.


Assuntos
Antifúngicos , Candida auris , Flavanonas , Fatores de Virulência , Flavanonas/farmacologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Animais , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Testes de Sensibilidade Microbiana , Scutellaria baicalensis/química , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Suínos , Larva/microbiologia , Mariposas/microbiologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Flavonoides
3.
PLoS Biol ; 21(8): e3002247, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590302

RESUMO

Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.


Assuntos
Demência Frontotemporal , Schizosaccharomyces , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Dinâmica Mitocondrial , Adenosina Trifosfatases , Mitocôndrias , Schizosaccharomyces/genética
4.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355349

RESUMO

The molecular mechanisms underlying the establishment of the monopolar growth of fission yeast spores have been less characterized. Here, we report that the Cdc42 GTPase-activating protein (GAP) Rga6 is required for promoting monopolar growth during spore germination. The absence of Rga6 increases the number of spores that grow in a bipolar fashion. Rga6 decorates the non-growing cortical region, binds phosphatidylinositol 4,5-bisphosphate, and colocalizes with the phosphatidylinositol 4,5-bisphosphate-binding protein Opy1. Overexpression of Opy1 diminishes the cortical localization of Rga6. The characteristic localization of Rga6 on the cell cortex depends on the C-terminal PBR region of Rga6. Moreover, engineered chimera composed of the Rga6 C-terminal PBR region fused to the GAP domain of Rga3 or Rga4 are sufficient to rescue the spore growth phenotype caused by the absence of Rga6. Hence, our work establishes a paradigm in which the lipid composition of the plasma membrane directs polarized cell growth by specifying the cortical localization of a GAP protein.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Esporos Fúngicos , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Fosfatidilinositol 4,5-Difosfato/metabolismo
5.
J Mol Cell Biol ; 14(11)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36526269

RESUMO

Mitochondria in many fungi are inherited uniparentally during meiosis. It has remained unclear whether parental mitochondria in the fission yeast Schizosaccharomyces pombe are inherited uniparentally or biparentally. Here, we assessed the mixing of parental mitochondria carefully by live-cell microscopy and developed an algorithm to determine the degree of mitochondrial mixing in a quantitative manner. We found that parental mitochondria in fission yeast cells were mixed progressively as meiosis progressed. Moreover, we established that mitochondrial fission and the size of the conjugation neck are the limiting factors in restricting the mixing of parental mitochondria. We further employed a combination of quantitative polymerase chain reaction, fluorescent live-cell microscopy, and transmission electron microscopy approaches to examine the mitochondrial inheritance of progeny cells derived from a cross between wild-type and Rho0 (mitochondrial DNA absent) cells. The results show that all progeny cells of the cross carry mitochondrial DNA. Hence, our data support the model in which parental mitochondria in the fission yeast S. pombe are inherited biparentally during meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Meiose
6.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35048989

RESUMO

Septins are a family of filament-forming GTP-binding proteins that regulate fundamental cellular activities, such as cytokinesis and cell polarity. In general, septin filaments function as barriers and scaffolds on the cell cortex. However, little is known about the mechanism that governs the recruitment and localization of the septin complex to the cell cortex. Here, we identified the Cdc42 GTPase-activating protein Rga6 as a key protein involved in promoting the localization of the septin complex to the cell cortex in the fission yeast Schizosaccharomyces pombe. Rga6 interacts with the septin complex and partially colocalizes with the septin complex on the cell cortex. Live-cell microscopy analysis further showed septin enrichment at the cortical regions adjacent to the growing cell tip. The septin enrichment likely plays a crucial role in confining active Cdc42 to the growing cell tip. Hence, our findings support a model whereby Rga6 regulates polarized cell growth partly through promoting targeted localization of the septin complex on the cell cortex. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Ativadoras de GTPase , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Septinas , Citocinese/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Septinas/genética , Septinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544876

RESUMO

Aspergillus fumigatus is a human opportunistic pathogen showing emerging resistance against a limited repertoire of antifungal agents available. The GTPase Rho1 has been identified as an important regulator of the cell wall integrity signaling pathway that regulates the composition of the cell wall, a structure that is unique to fungi and serves as a target for antifungal compounds. Rom2, the guanine nucleotide exchange factor to Rho1, contains a C-terminal citron homology (CNH) domain of unknown function that is found in many other eukaryotic genes. Here, we show that the Rom2 CNH domain interacts directly with Rho1 to modulate ß-glucan and chitin synthesis. We report the structure of the Rom2 CNH domain, revealing that it adopts a seven-bladed ß-propeller fold containing three unusual loops. A model of the Rho1-Rom2 CNH complex suggests that the Rom2 CNH domain interacts with the Rho1 Switch II motif. This work uncovers the role of the Rom2 CNH domain as a scaffold for Rho1 signaling in fungal cell wall biosynthesis.


Assuntos
Aspergillus fumigatus/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Parede Celular/fisiologia , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/genética
8.
Nat Commun ; 12(1): 521, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483504

RESUMO

The endoplasmic reticulum-mitochondria encounter structure (ERMES) complex creates contact sites between the endoplasmic reticulum and mitochondria, playing crucial roles in interorganelle communication, mitochondrial fission, mtDNA inheritance, lipid transfer, and autophagy. The mechanism regulating the number of ERMES foci within the cell remains unclear. Here, we demonstrate that the mitochondrial membrane protein Emr1 contributes to regulating the number of ERMES foci. We show that the absence of Emr1 significantly decreases the number of ERMES foci. Moreover, we find that Emr1 interacts with the ERMES core component Mdm12 and colocalizes with Mdm12 on mitochondria. Similar to ERMES mutant cells, cells lacking Emr1 display defective mitochondrial morphology and impaired mitochondrial segregation, which can be rescued by an artificial tether capable of linking the endoplasmic reticulum and mitochondria. We further demonstrate that the cytoplasmic region of Emr1 is required for regulating the number of ERMES foci. This work thus reveals a crucial regulatory protein necessary for ERMES functions and provides mechanistic insights into understanding the dynamic regulation of endoplasmic reticulum-mitochondria communication.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Contact (Thousand Oaks) ; 4: 25152564211064491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37366373

RESUMO

In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is present between the endoplasmic reticulon (ER) and mitochondria to promote the formation of the ER-mitochondria contact sites. Four constitutive components (Mmm1, Mdm12, Mdm34, and Mdm10) assemble to form the ERMES complex while regulator proteins are required for regulating the organization and function of the ERMES complex. Multiple regulator proteins, including Gem1, Lam6, Tom7, and Emr1, of the ERMES complex, have been identified recently. In this review, we discuss the organization of the ERMES complex and the roles of the regulator proteins of the ERMES complex.

10.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005728

RESUMO

Ergosterol plays an important role in maintaining cell membrane sterol homeostasis in fungi, and as such, it is considered an effective target in antifungal chemotherapy. In yeast, the enzyme acetyl-coenzyme A (CoA) acetyltransferase (ERG10) catalyzes the Claisen condensation of two acetyl-CoA molecules to acetoacetyl-CoA in the ergosterol biosynthesis pathway and is reported as being critical for cell viability. Using yeast ERG10 for alignment, two orthologues, AfERG10A (AFUB_000550) and AfERG10B (AFUB_083570), were discovered in the opportunistic fungal pathogen Aspergillus fumigatus Despite the essentiality of AfERG10B having been previously validated, the biological function of AfERG10A remains unclear. In this study, we have characterized recombinant AfERG10A as a functional acetyl-CoA acetyltransferase catalyzing both synthetic and degradative reactions. Unexpectedly, AfERG10A localizes to the mitochondria in A. fumigatus, as shown by C-terminal green fluorescent protein (GFP) tag fusion. Both knockout and inducible promoter strategies demonstrate that Aferg10A is essential for the survival of A. fumigatus The reduced expression of Aferg10A leads to severe morphological defects and increased susceptibility to oxidative and cell wall stresses. Although the catalytic mechanism of acetyl-CoA acetyltransferase family is highly conserved, the crystal structure of AfERG10A and its complex with CoA are solved, revealing four substitutions within the CoA binding site that are different from human orthologues. Taken together, our combination of genetic and structural studies demonstrates that mitochondrial AfERG10A is essential for A. fumigatus cell viability and could be a potential drug target to feed the antifungal drug development pipeline.IMPORTANCE A growing number of people worldwide are suffering from invasive aspergillosis caused by the human opportunistic fungal pathogen A. fumigatus Current therapeutic options rely on a limited repertoire of antifungals. Ergosterol is an essential component of the fungal cell membrane as well as a target of current antifungals. Approximately 20 enzymes are involved in ergosterol biosynthesis, of which acetyl-CoA acetyltransferase (ACAT) is the first enzyme. Two ACATs in A. fumigatus are AfErg10A and AfErg10B. However, the biological function of AfErg10A is yet to be investigated. In this study, we showed that AfErg10A is localized in the mitochondria and is essential for A. fumigatus survival and morphological development. In combination with structural studies, we validated AfErg10A as a potential drug target that will facilitate the development of novel antifungals and improve the efficiency of existing drugs.


Assuntos
Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Aspergillus fumigatus/enzimologia , Ergosterol/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Microbiology (Reading) ; 163(2): 218-232, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28277197

RESUMO

Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Hifas/crescimento & desenvolvimento , Ribose-Fosfato Pirofosfoquinase/genética , Esporos Fúngicos/crescimento & desenvolvimento , Trifosfato de Adenosina/química , Aspergillus nidulans/crescimento & desenvolvimento , Deleção de Genes , Técnicas de Inativação de Genes , Hifas/genética , Fosforribosil Pirofosfato/biossíntese , RNA Mensageiro/genética , Ribosemonofosfatos/química , Esporos Fúngicos/genética
12.
Eukaryot Cell ; 13(12): 1494-506, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280816

RESUMO

Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. Different activities of PP2A and subcellular localization are determined by its regulatory subunits. Here we identified and characterized the functions of two protein phosphatase regulatory subunit homologs, ParA and PabA, in Aspergillus nidulans. Our results demonstrate that ParA localizes to the septum site and that deletion of parA causes hyperseptation, while overexpression of parA abolishes septum formation; this suggests that ParA may function as a negative regulator of septation. In comparison, PabA displays a clear colocalization pattern with 4',6-diamidino-2-phenylindole (DAPI)-stained nuclei, and deletion of pabA induces a remarkable delayed-septation phenotype. Both parA and pabA are required for hyphal growth, conidiation, and self-fertilization, likely to maintain normal levels of PP2A activity. Most interestingly, parA deletion is capable of suppressing septation defects in pabA mutants, suggesting that ParA counteracts PabA during the septation process. In contrast, double mutants of parA and pabA led to synthetic defects in colony growth, indicating that ParA functions synthetically with PabA during hyphal growth. Moreover, unlike the case for PP2A-Par1 and PP2A-Pab1 in yeast (which are negative regulators that inactivate the septation initiation network [SIN]), loss of ParA or PabA fails to suppress defects of temperature-sensitive mutants of the SEPH kinase of the SIN. Thus, our findings support the previously unrealized evidence that the B-family subunits of PP2A have comprehensive functions as partners of heterotrimeric enzyme complexes of PP2A, both spatially and temporally, in A. nidulans.


Assuntos
Aspergillus nidulans/fisiologia , Proteínas Fúngicas/fisiologia , Proteína Fosfatase 2/fisiologia , Esporos Fúngicos/enzimologia , Aspergillus nidulans/citologia , Núcleo Celular/fisiologia , Técnicas de Inativação de Genes , Subunidades Proteicas/fisiologia , Transporte Proteico , Transdução de Sinais
13.
Mol Microbiol ; 86(4): 894-907, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22994198

RESUMO

Timely cytokinesis/septation is essential for hyphal growth and conidiation in Aspergillus nidulans. Genetic analyses have identified that A. nidulans has components of the septum initiation network (SIN) pathway; one of these, SEPH, is a key player for early events during cytokinesis. However, little is known about how the SEPH kinase cascade is regulated by other components. Here, we demonstrate that the phosphoribosyl pyrophosphate synthetase family acts antagonistically against the SIN so that the downregulation of AnPRS family can bypass the requirements of the SIN for septum formation and conidiation. The transcription defect of the Anprs gene family accompanied with the reduction of AnPRS activity causes the formation of hyper-septation as well as the restoration of septation and conidiation in the absence of SEPH. Clearly, the timing and positioning of septation is related to AnPRS activity. Moreover, with the extensive yeast two-hybrid analysis and rescue combination experiments, it demonstrated that AnPRS members are able to form the heterodimers for functional interacting entities but they appear to contribute so unequally that Anprs1 mutant display relatively normal septation, but Anprs2 deletion is lethal. Thus, compared to in yeast, the AnPRS family may have a unique regulation mechanism during septation in filamentous fungi.


Assuntos
Aspergillus nidulans/fisiologia , Citocinese , Ribose-Fosfato Pirofosfoquinase/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Deleção de Genes , Hifas/crescimento & desenvolvimento , Mutação , Ribose-Fosfato Pirofosfoquinase/genética , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Tempo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA