Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(18): e38086, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701247

RESUMO

BACKGROUND: Dementia is a major public health challenge for aging societies worldwide. Neuroinflammation is thought to be a key factor in dementia development. The aim of this study was to comprehensively assess translocator protein (TSPO) expression by positron emission tomography (PET) imaging to reveal the characteristics of neuroinflammation in dementia. METHODS: We used a meta-analysis to retrieve literature on TSPO expression in dementia using PET imaging technology, including but not limited to the quality of the study design, sample size, and the type of TSPO ligand used in the study. For the included studies, we extracted key data, including TSPO expression levels, clinical characteristics of the study participants, and specific information on brain regions. Meta-analysis was performed using R software to assess the relationship between TSPO expression and dementia. RESULTS: After screening, 12 studies that met the criteria were included. The results of the meta-analysis showed that the expression level of TSPO was significantly elevated in patients with dementia, especially in the hippocampal region. The OR in the hippocampus was 1.50 with a 95% CI of 1.09 to 1.25, indicating a significant increase in the expression of TSPO in this region compared to controls. Elevated levels of inflammation in the prefrontal lobe and cingulate gyrus are associated with cognitive impairment in patients. This was despite an OR of 1.00 in the anterior cingulate gyrus, indicating that TSPO expression in this region did not correlate significantly with the findings. The overall heterogeneity test showed I² = 51%, indicating moderate heterogeneity. CONCLUSION: This study summarizes the existing literature on TSPO expression in specific regions of the brain in patients with dementia, and also provides some preliminary evidence on the possible association between neuroinflammation and dementia. However, the heterogeneity of results and limitations of the study suggest that we need to interpret these findings with caution. Future studies need to adopt a more rigorous and consistent methodological design to more accurately assess the role of neuroinflammation in dementia, thereby providing a more reliable evidence base for understanding pathological mechanisms and developing potential therapeutic strategies.


Assuntos
Demência , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons , Receptores de GABA , Humanos , Tomografia por Emissão de Pósitrons/métodos , Demência/diagnóstico por imagem , Demência/metabolismo , Receptores de GABA/metabolismo , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
2.
Int J Biol Macromol ; 262(Pt 2): 130086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360224

RESUMO

This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.


Assuntos
Amilose , Pirogalol , Pirogalol/química , Polifenóis/química , Ácido Gálico/química
3.
Ultrason Sonochem ; 95: 106367, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933501

RESUMO

O/W emulsions stabilized by polyphenol/amylose (AM) complexes with several polyphenol/AM mass ratios and different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) were prepared by a high-intensity ultrasound emulsification technique. The effect of the pyrogallol group number of polyphenols and the mass ratio of polyphenols/AM on polyphenol/AM complexes and emulsions was studied. The soluble and/or insoluble complexes gradually formed upon adding polyphenols into the AM system. However, insoluble complexes were not formed in the GA/AM systems because GA has only one pyrogallol group. In addition, the hydrophobicity of AM could also be improved by forming polyphenol/AM complexes. The emulsion size decreased with increasing pyrogallol group number on the polyphenol molecules at a fixed ratio, and the size could also be controlled by the polyphenol/AM ratio. Moreover, all emulsions presented various degrees of creaming, which was restrained by decreasing emulsion size or the formation of a thick complex network. The complex network was enhanced by increasing the ratio or pyrogallol group number on the polyphenol molecules, which was because the increasing number of complexes was adsorbed onto the interface. Altogether, compared to GA/AM and EGCG/AM, the TA/AM complex emulsifier had the best hydrophobicity and emulsifying properties, and the TA/AM emulsion had the best emulsion stability.

4.
Food Chem ; 339: 128112, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152889

RESUMO

Green tea nanoparticles (gTNPs) are considered as the precursors of tea cream, while the role of gTNPs in the process of tea cream formation remains obscure. This study indicated that gTNPs could be coated with epigallocatechin gallate (EGCG)-caffeine (CAF) complexes to form a ternary aggregate participating in tea cream formation. First, the ζ-potentials of gTNPs and EGCG-CAF complexes were adjusted by charge screening. Then, gTNPs were introduced into EGCG + CAF mixture solutions under different ζ-potential conditions to examine their effect on turbidity, particle size and components of mixture solutions. Finally, isothermal titration calorimetry (ITC) was applied to investigate the influence of gTNPs on the thermal effects of the interaction between EGCG and CAF. Our results reveal that hydrophobic interaction exceeded electrostatic repulsion to dominate the interaction between gTNPs and EGCG-CAF complexes at the low ζ-potential condition, thus forming the gTNPs/EGCG/CAF ternary aggregate.


Assuntos
Cafeína/química , Catequina/análogos & derivados , Nanopartículas/química , Chá/química , Calorimetria , Catequina/química , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA