Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Int Med ; 12(3): 288-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39081282

RESUMO

Background and Objectives: Overcoming ATP-binding cassette subfamily G member 2 (ABCG2)-mediated multidrug resistance (MDR) has attracted the attention of scientists because one of the critical factors resulting in MDR in cancer is the overexpression of ABCG2. RN486, a Bruton's Tyrosine Kinase (BTK) inhibitor, was discovered to potentially reverse ABCB1-mediated MDR. However, there is still uncertainty about whether RN486 has a reversal off-target impact on ABCG2-mediated MDR. Methods: MTT assay was used to detect the reversal effect of RN486 on ABCG2-overexpressing cancer cells. The ABCG2 expression level and subcellular localization were examined by Western blotting and immunofluorescence. Drug accumulation and eflux assay and ATPase assay were performed to analyze the ABCG2 transporter function and ATPase activity. Molecular modeling predicted the binding between RN486 and ABCG2 protein. Results: Non-toxic concentrations of RN486 remarkably increased the sensitivity of ABCG2-overexpressing cancer cells to conventional anticancer drugs mitoxantrone and topotecan. The reversal mechanistic studies showed that RN486 elevated the drug accumulation because of reducing the eflux of ABCG2 substrate drug in ABCG2-overexpressing cancer cells. In addition, the inhibitory efect of RN486 on ABCG2-associated ATPase activity was also verified. Molecular docking study implied a strong binding afinity between RN486 and ABCG2 transporter. Meanwhile, the ABCG2 subcellular localization was not altered by the treatment of RN486, but the expression level of ABCG2 was down-regulated. Conclusions: Our studies propose that RN486 can antagonize ABCG2-mediated MDR in cancer cells via down-regulating the expression level of ABCG2 protein, reducing ATPase activity of ABCG2 transporter, and inhibiting the transporting function. RN486 could be potentially used in conjunction with chemotherapy to alleviate MDR mediated by ABCG2 in cancer.

2.
Sci Rep ; 13(1): 7077, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127686

RESUMO

Alzheimer's disease (AD) is a chronic degenerative brain disorder with no clear pathogenesis or effective cure, accounting for 60-80% of cases of dementia. In recent years, the importance of neuroinflammation in the pathogenesis of AD and other neurodegenerative disorders has come into focus. Previously, we made the serendipitous discovery that the widely used drug excipient N,N-dimethylacetamide (DMA) attenuates endotoxin-induced inflammatory responses in vivo. In the current work, we investigate the effect of DMA on neuroinflammation and its mechanism of action in in-vitro and ex-vivo models of AD. We show that DMA significantly suppresses the production of inflammatory mediators, such as reactive oxygen species (ROS), nitric oxide (NO) and various cytokines and chemokines, as well as amyloid-ß (Aß), in cultured microglia and organotypic hippocampal slices induced by lipopolysaccharide (LPS). We also demonstrate that DMA inhibits Aß-induced inflammation. Finally, we show that the mechanism of DMA's effect on neuroinflammation is inhibition of the nuclear factor kappa-B (NF-κB) signaling pathway and we show how DMA dismantles the positive feedback loop between NF-κB and Aß synthesis. Taken together, our findings suggest that DMA, a generally regarded as safe compound that crosses the blood brain barrier, should be further investigated as a potential therapy for Alzheimer's disease and neuroinflammatory disorders.


Assuntos
Doença de Alzheimer , Humanos , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo
3.
Reprod Sci ; 29(10): 2894-2907, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35349119

RESUMO

Preterm birth accounts for the majority of perinatal mortality worldwide, and there remains no FDA-approved drug to prevent it. Recently, we discovered that the common drug excipient, N,N-dimethylacetamide (DMA), delays inflammation-induced preterm birth in mice by inhibiting NF-κB. Since we reported this finding, it has come to light that a group of widely used, structurally related aprotic solvents, including DMA, N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF), have anti-inflammatory efficacy. We show here that DMF suppresses LPS-induced TNFα secretion from RAW 264.7 cells and IL-6 and IL-8 secretion from HTR-8 cells at concentrations that do not significantly affect cell viability. Like DMA, DMF protects IκBα from degradation and prevents the p65 subunit of NF-κB from translocating to the nucleus. In vivo, DMF decreases LPS-induced inflammatory cell infiltration and expression of TNFα and IL-6 in the placental labyrinth, all to near baseline levels. Finally, DMF decreases the rate of preterm birth in LPS-induced pregnant mice (P<.0001) and the rate at which pups are spontaneously aborted (P<.0001). In summary, DMF, a widely used solvent structurally related to DMA and NMP, delays LPS-induced preterm birth in a murine model without overt toxic effects. Re-purposing the DMA/DMF/NMP family of small molecules as anti-inflammatory drugs is a promising new approach to delaying or reducing the incidence of inflammation-induced preterm birth and potentially attenuating other inflammatory disorders as well.


Assuntos
Dimetilformamida , Nascimento Prematuro , Acetamidas , Animais , Anti-Inflamatórios/farmacologia , Dimetilformamida/efeitos adversos , Modelos Animais de Doenças , Excipientes/efeitos adversos , Feminino , Humanos , Recém-Nascido , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Interleucina-6 , Interleucina-8 , Lipopolissacarídeos/farmacologia , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Placenta/metabolismo , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/prevenção & controle , Solventes/efeitos adversos , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA