Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38668477

RESUMO

Polyethylene (PE) is a common component of microplastic pollution, and cadmium (Cd) is a prevalent pollutant in contaminated freshwater bodies in China. Among cyanobacteria, Microcystis aeruginosa (M. aeruginosa) plays a crucial role in the formation of algal blooms in these water systems. However, there has been limited research on how microplastics and heavy metals affect cyanobacteria ecologically. This study aimed to evaluate the physiological effects of individual and combined exposure to Cd pollutants and microplastics on M. aeruginosa. The solutions containing 13 µm and 6.5 µm PE particles (100 mg/L) with Cd were used in the research. The results indicated that the combined treatment led to a significant inhibition of chlorophyll a content, dropping to zero by day 5. The treated groups exhibited higher microcystins (MCs) content compared to the control group, suggesting increased MCs release due to pollutant exposure. Interestingly, the adsorption of heavy metals by microplastics partially alleviated the toxicity of heavy metals on algal cells. Moreover, the combined treatment significantly suppressed catalase (CAT) activity compared to Cd treatment, indicating a synergistic effect that led to greater oxidative stress. Overall, this study provides valuable insights into the impact of PE and Cd pollution on freshwater ecosystems, elucidates the physiological responses of cyanobacteria to these pollutants, and establishes a theoretical groundwork for addressing complex water pollution using cyanobacteria-based strategies.

2.
Nanomaterials (Basel) ; 13(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686939

RESUMO

Sustainable and high-performance energy storage materials are crucial to address global energy and environmental challenges. In this study, Spirulina platensis was used as the carbon and nitrogen source, and Spirulina-based nanoporous biochar (SNPB) was synthesized through chemical activation using KOH as the activating agent in N2 atmosphere. SNPB-800-4 was characterized by N2 adsorption-desorption and XPS, showing a high specific surface area (2923.7 m2 g-1) and abundant heteroatomic oxygen (13.78%) and nitrogen (2.55%). SNPB-800-4 demonstrated an exceptional capacitance of 348 F g-1 at a current density of 1 A g-1 and a remarkable capacitance retention of 94.14% after 10,000 cycles at a current density of 10 A g-1 in 6 M KOH. Notably, symmetric supercapacitors SNPB-800-4//SNPB-800-4 achieved the maximum energy and power densities of 17.99 Wh kg-1 and 162.48 W kg-1, respectively, at a current density of 0.5 A g-1, and still maintained 2.66 Wh kg-1 when the power density was increased to 9685.08 W kg-1 at a current density of 30 A g-1. This work provides an easily scalable and straightforward way to convert waste algae biomass into in situ N, O-dually doped biochar for ultra-high-power supercapacitors.

3.
RSC Adv ; 13(37): 25877-25887, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664215

RESUMO

How to efficiently treat municipal solid waste (MSW) has become one of the critical solutions in response to the call for "carbon neutrality". Here, the waste polypropylene nonwoven fabric of waste diapers was converted into hierarchical nanoporous biochar (HPBC) through pre-carbonization and activation processes as an ideal precursor for supercapacitors (SCs) with excellent performance. The prepared HPBC-750-4 with an ultrahigh specific surface area (3838.04 m2 g-1) and abundant heteroatomic oxygen (13.25%) and nitrogen (1.16%) codoped porous biochar structure. Given its structural advantages, HPBC-750-4 achieved a specific capacitance of 340.9 F g-1 at a current density of 1 A g-1 in a three-electrode system. Its capacitance retention rate was above 99.2% after 10 000 cycles at a current density of 10 A g-1, which indicated an excellent rate capability and long-term cycling stability. Furthermore, the HPBC-750-4//HPBC-750-4 symmetric SC exhibited a superb energy density of 10.02 W h kg-1 with a power density of 96.15 W kg-1 in a 6 M KOH electrolyte. This work not only demonstrates the enormous potential of waste polypropylene nonwoven fabric in the SC industry but also provides an economically feasible means of managing MSW.

4.
Front Plant Sci ; 14: 1240472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636097

RESUMO

Heavy metals typically coexist with microplastics (MPs) in terrestrial ecosystems. Yet, little is known about how the co-existence of heavy metals and MPs affect crops. Therefore, this study aimed to evaluate the impact of cadmium (Cd; 40 mg/L) alone and its co-existence with polypropylene (PP)-MPs (50 and 100 µm) on seed germination, root and shoot growth, seedling dry weight (DW), and antioxidant enzyme activities of wheat. The study demonstrated that the germination rate of wheat did not vary significantly across treatment groups. Yet, the inhibitory impact on wheat seed germination was strengthened under the co-existence of Cd and PP-MPs, as the effect of a single treatment on seed germination was non-significant. The germination index and mean germination time of wheat seeds were not affected by single or combined toxicity of Cd and PP-MPs. In contrast, Cd and PP-MPs showed synergistic effects on germination energy. Wheat root and shoot length were impeded by Cd alone and in combination with PP-MPs treatments. The DW of wheat seedlings showed significant change across treatment groups until the third day, but on the seventh day, marginal differences were observed. For example, on third day, the DW of the Cd treatment group increased by 6.9% compared to CK, whereas the DW of the 100 µm PP-MPs+Cd treatment group decreased by 8.4% compared to CK. The co-occurrence of Cd and PP-MPs indicated that 50 µm PP-MPs+Cd had an antagonistic impact on wheat seedling growth, whereas 100 µm PP-MPs+Cd had a synergistic impact due to the larger size of PP-MPs. The antioxidant enzyme system of wheat seeds and seedlings increased under single Cd pollution, while the activities of superoxide dismutase, catalase, and peroxidase were decreased under combined pollution. Our study found that Cd adversely affects wheat germination and growth, while the co-existence of Cd and PP-MPs have antagonistic and synergistic effects depending on the size of the PP-MPs.

5.
RSC Adv ; 13(34): 24140-24149, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577085

RESUMO

With the widespread use of antibiotics, the safe utilization of waste antibiotic fermentation residues has become an urgent issue to be resolved. In this study, in situ N, O co-doped porous carbon was prepared using fresh oxytetracycline fermentation residue under the mild activation of the green activator K2CO3. The optimal sample exhibited a 3D grid carbon skeleton structure, excellent specific surface area (SBET = 948 m2 g-1), and high nitrogen and oxygen content (N = 3.42 wt%, O = 14.86 wt%). Benefiting from its developed morphology, this sample demonstrated excellent electrochemical performance with a high specific capacitance of 310 F g-1 at a current density of 0.5 A g-1 in the three-electrode system. Moreover, it exhibited superior cycling stability with only a 5.32% loss of capacity after 10 000 cycles in 6 M KOH aqueous electrolyte. Furthermore, the symmetric supercapacitor prepared from it exhibited a maximum energy density of 7.2 W h kg-1 at a power density of 124.9 W kg-1, demonstrating its promising application prospects. This study provided a green and facile process for the sustainable and harmless treatment of antibiotic fermentation residues.

6.
Environ Pollut ; 333: 121972, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295710

RESUMO

It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g-1 and 6.40 mmol g-1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.


Assuntos
Nanoporos , Oxitetraciclina , Carbono/química , Dióxido de Carbono/química , Nitrogênio/química , Antibacterianos , Fermentação
7.
Environ Pollut ; 277: 116455, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640817

RESUMO

In this study, a novel biochar-based compound fertilizer (BCF) was synthesized with maize straw biomass, diatomite, triple superphosphate and urea at different temperatures (300 °C, 450 °C, 600 °C) and mixture proportions (5:1:1:x and 10:1:1:x). An investigation was conducted into the effects of BCF at low application rates on the immobilization of available cadmium, soil fertility and maize growth. The lab incubation experiments showed that the low doses of BCF (B5PNx and B10PNx) contributed to a significant reduction of the Cd availability in soil, with the highest reduction rate of available Cd up to 44.13%. Field experiments demonstrated that the low doses ( < 0.1%) of BCF(especially for B5PN600)led to the improvement of soil fertility and maize growth (including maize yield) and the significant reduction of Cd contents in maize grains. The increase of pyrolysis temperature could enhance the biochar adsorption capacity for Cd2+ by increasing both specific surface areas and total pore volume. The modification of urea, diatomite and triple superphosphate played a vital role on cadmium immobilization, soil improvement and maize growth by forming porous adsorption, precipitates or complexation with the increase of functional groups, as well as supplementation of N, P, Si nutrients. This study suggested that the biochar-based compound fertilizer (BCF with a mixture ratio of 5:1:1:x) produced at 600 °C could be served as a promising and eco-friendly remediation agent for the arable soils polluted with Cd, with reduction of chemical fertilizers.


Assuntos
Poluentes do Solo , Solo , Cádmio/análise , Carvão Vegetal , Fertilizantes , Poluentes do Solo/análise , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA