Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 8(1): 102323, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38404941

RESUMO

Background: Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure (ALF). Neutrophil activation has been associated with poor outcomes in patients with ALF and is proposed to amplify coagulation in this context. However, the precise role of neutrophils in APAP-induced liver injury is not known. Methods: We used a dual antibody-mediated neutrophil depletion strategy to determine the role of neutrophils in mice challenged with different doses of APAP (300 or 600 mg/kg) that produce hepatotoxicity and ALF-like pathology. Results: Flow cytometry confirmed depletion of neutrophils in whole blood prior to APAP challenge. Mice given isotype control and challenged with 300 mg/kg APAP developed marked hepatocellular necrosis and showed an increase in biomarkers of coagulation cascade activation. Neutrophil depletion (anti-Ly6G) did not affect either liver injury or coagulation activation in mice challenged with 300 mg/kg APAP. Mice given isotype control and challenged with 600 mg/kg APAP developed hepatic necrosis alongside marked hemorrhage and congestion indicative of vascular injury. Interestingly, hepatic neutrophil and platelet accumulation were increased in mice given 600 mg/kg APAP compared with those given the lower APAP dose. Neutrophil depletion significantly reduced the severity of liver necrosis in mice challenged with 600 mg/kg APAP, without significantly impacting biomarkers of coagulation activity. Notably, neutrophil depletion significantly reduced hepatic platelet accumulation in mice challenged with 600 mg/kg APAP. Conclusion: The results indicate a role of neutrophils in APAP-induced liver injury that is dependent on the APAP dose and suggest involvement of neutrophil-platelet interactions in promoting hepatic injury in experimental APAP-induced ALF.

2.
J Thromb Haemost ; 22(3): 620-632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38007060

RESUMO

BACKGROUND: Activation of coagulation and fibrin deposition in the regenerating liver appears to promote adequate liver regeneration in mice. In humans, perioperative hepatic fibrin deposition is reduced in patients who develop liver dysfunction after partial hepatectomy (PHx), but the mechanism underlying reduced fibrin deposition in these patients is unclear. METHODS AND RESULTS: Hepatic deposition of cross-linked (ie, stabilized) fibrin was evident in livers of mice after two-thirds PHx. Interestingly, hepatic fibrin cross-linking was dramatically reduced in mice after 90% PHx, an experimental setting of failed liver regeneration, despite similar activation of coagulation after two-thirds or 90% PHx. Likewise, intraoperative activation of coagulation was not reduced in patients who developed liver dysfunction after PHx. Preoperative fibrinogen plasma concentration was not connected to liver dysfunction after PHx in patients. Rather, preoperative and postoperative plasma activity of the transglutaminase coagulation factor (F)XIII, which cross-links fibrin, was lower in patients who developed liver dysfunction than in those who did not. PHx-induced hepatic fibrin cross-linking and hepatic platelet accumulation were significantly reduced in mice lacking the catalytic subunit of FXIII (FXIII-/- mice) after two-thirds PHx. This was coupled with a reduction in both hepatocyte proliferation and liver-to-body weight ratio as well as an apparent reduction in survival after two-thirds PHx in FXIII-/- mice. CONCLUSION: The results indicate that FXIII is a critical driver of liver regeneration after PHx and suggest that perioperative plasma FXIII activity may predict posthepatectomy liver dysfunction. The results may inform strategies to stabilize proregenerative fibrin during liver resection.


Assuntos
Hepatectomia , Hepatopatias , Humanos , Camundongos , Animais , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Regeneração Hepática/fisiologia , Fator XIII , Fígado/cirurgia , Fibrina
3.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971174

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Fibrinolisina , Neoplasias Pancreáticas/patologia , Plasminogênio
4.
J Phys Chem C Nanomater Interfaces ; 127(31): 15406-15415, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583440

RESUMO

Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical characterizations and transient absorption spectroscopy, we have investigated the mechanism of interfacial charge transfer (CT) between colloidal CsPbBr3 nanoplatelets (NPLs) and surface-anchored perylene derivatives and have explored the possibility of controlling the CT rate by tuning the driving force. The CT driving force was tuned systematically by attaching acceptors with different electron affinities and by varying the bandgap of NPLs via thickness-controlled quantum confinement. Our data show that the charge-separated state is formed by selectively exciting either the electron donors or acceptors in the same system. Upon exciting attached acceptors, hole transfer from perylene derivatives to CsPbBr3 NPLs takes place on a picosecond time scale, showing an energetic behavior in line with the Marcus normal regime. Interestingly, such energetic behavior is absent upon exciting the electron donor, suggesting that the dominant CT mechanism is energy transfer followed by ultrafast hole transfer. Our findings not only elucidate the photophysics of perovskite-molecule systems but also provide guidelines for tailoring such hybrid systems for specific applications.

5.
J Thromb Haemost ; 21(9): 2430-2440, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37054919

RESUMO

BACKGROUND: Patients with acetaminophen (APAP)-induced acute liver failure (ALF) display both hyper- and hypocoagulable changes not necessarily recapitulated by standard hepatotoxic doses of APAP used in mice (eg, 300 mg/kg). OBJECTIVES: We sought to examine coagulation activation in vivo and plasma coagulation potential ex vivo in experimental settings of APAP-induced hepatotoxicity and repair (300-450 mg/kg) and APAP-induced ALF (600 mg/kg) in mice. RESULTS: APAP-induced ALF was associated with increased plasma thrombin-antithrombin complexes, decreased plasma prothrombin, and a dramatic reduction in plasma fibrinogen compared with lower APAP doses. Hepatic fibrin(ogen) deposits increased independent of APAP dose, whereas plasma fibrin(ogen) degradation products markedly increased in mice with experimental ALF. Early pharmacologic anticoagulation (+2 hours after 600 mg/kg APAP) limited coagulation activation and reduced hepatic necrosis. The marked coagulation activation evident in mice with APAP-induced ALF was associated with a coagulopathy detectable ex vivo in plasma. Specifically, prolongation of the prothrombin time and inhibition of tissue factor-initiated clot formation were evident even after restoration of physiological fibrinogen concentrations. Plasma endogenous thrombin potential was similarly reduced at all APAP doses. Interestingly, in the presence of ample fibrinogen, ∼10 times more thrombin was required to clot plasma from mice with APAP-induced ALF compared with plasma from mice with simple hepatotoxicity. CONCLUSION: The results indicate that robust pathologic coagulation cascade activation in vivo and suppressed coagulation ex vivo are evident in mice with APAP-induced ALF. This unique experimental setting may fill an unmet need as a model to uncover mechanistic aspects of the complex coagulopathy of ALF.


Assuntos
Transtornos da Coagulação Sanguínea , Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática , Camundongos , Animais , Acetaminofen/metabolismo , Trombina/metabolismo , Falência Hepática/metabolismo , Falência Hepática/patologia , Fígado/metabolismo , Fibrina/metabolismo , Transtornos da Coagulação Sanguínea/induzido quimicamente , Transtornos da Coagulação Sanguínea/metabolismo , Fibrinogênio/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Camundongos Endogâmicos C57BL
6.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36798332

RESUMO

Lipids contribute to hematopoiesis and membrane properties and dynamics, however, little is known about the role of lipids in megakaryopoiesis. Here, a lipidomic analysis of megakaryocyte progenitors, megakaryocytes, and platelets revealed a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake and de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in thrombocytopenia. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production, and that changes in dietary fatty acids may be a novel and viable target to modulate platelet counts.

7.
J Phys Chem C Nanomater Interfaces ; 126(45): 19250-19261, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36424999

RESUMO

A series of three perylenemonoimide-p-oligophenylene-dimethylaniline molecular dyads undergo photoinduced charge separation (CS) with anomalous distance dependence as a function of increasing donor-acceptor (DA) distances. A comprehensive experimental and computational investigation of the photodynamics in the donor-bridge-acceptor (DBA) chromophores reveals a clear demarcation concerning the nature of the CS accessed at shorter (bridgeless) and longer DA distances. At the shortest distance, a strong DA interaction and ground-state charge delocalization populate a hot excited state (ES) with prominent charge transfer (CT) character, via Franck-Condon vertical excitation. The presence of such a CT-polarized hot ES enables a subpicosecond CS in the bridgeless dyad. The incorporation of the p-oligophenylene bridge effectively decouples the donor and the acceptor units in the ground state and consequentially suppresses the CT polarization in the hot ES. Theoretically, this should render a slower CS at longer distances. However, the transient absorption measurement reveals a fast CS process at the longer distance, contrary to the anticipated exponential distance dependence of the CS rates. A closer look into the excited-state dynamics suggests that the hot ES undergoes ultrafast geometry relaxation (τ < 1 ps) to create a relaxed ES. As compared to a decoupled, twisted geometry in the hot ES, the geometry of the relaxed ES exhibits a more planar conformation of the p-oligophenylene bridges. Planarization of the bridge endorses an increased charge delocalization and a prominent CT character in the relaxed ES and forms the origin for the evident fast CS at the longest distance. Thus, the relaxation of the hot ES and the concomitantly enhanced charge delocalization adds a new caveat to the classic nature of distance-dependent CS in artificial DBA chromophores and recommends a cautious treatment of the attenuation factor (ß) while discussing anomalous CS trends.

8.
J Thromb Haemost ; 20(12): 2873-2886, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36111375

RESUMO

BACKGROUND: Obesity predisposes individuals to metabolic syndrome, which increases the risk of cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes. A pathological manifestation of obesity is the activation of the coagulation system. In turn, extravascular fibrin(ogen) deposits accumulate in adipose tissues and liver. These deposits promote adiposity and downstream sequelae by driving pro-inflammatory macrophage function through binding the leukocyte integrin receptor αM ß2 . OBJECTIVES: An unresolved question is whether conversion of soluble fibrinogen to a crosslinked fibrin matrix is required to exacerbate obesity-driven diseases. METHODS: Here, fibrinogen-deficient/depleted mice (Fib- or treated with siRNA against fibrinogen [siFga]), mice expressing fibrinogen that cannot polymerize to fibrin (FibAEK ), and mice deficient in the fibrin crosslinking transglutaminase factor XIII (FXIII-) were challenged with a high-fat diet (HFD) and compared to mice expressing a mutant form of fibrinogen lacking the αM ß2 -binding domain (Fib𝛾390-396A ). RESULTS AND CONCLUSIONS: Consistent with prior studies, Fib𝛾390-396A mice were significantly protected from increased adiposity, NAFLD, hypercholesterolemia, and diabetes while Fib- and siFga-treated mice gained as much weight and developed obesity-associated pathologies identical to wildtype mice. FibAEK and FXIII- mice displayed an intermediate phenotype with partial protection from some obesity-associated pathologies. Results here indicate that fibrin(ogen) lacking αM ß2 binding function offers substantial protection from obesity and associated disease that is partially recapitulated by preventing fibrin polymer formation or crosslinking of the wildtype molecule, but not by reduction or complete elimination of fibrinogen. Finally, these findings support the concept that fibrin polymerization and crosslinking are required for the full implementation of fibrin-driven inflammation in obesity.


Assuntos
Afibrinogenemia , Diabetes Mellitus Tipo 2 , Hemostáticos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Fibrina/metabolismo , Polímeros , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fator XIII/metabolismo , Obesidade , Dieta
9.
Phys Chem Chem Phys ; 23(14): 8900-8907, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876049

RESUMO

Donor-bridge-acceptor systems based on boron dipyrromethene (BODIPY) are attractive candidates for bio-imagining and sensing applications because of their sensitivity to temperature, micro-viscosity and solvent polarity. The optimization of the properties of such molecular sensors requires a detailed knowledge of the relation between the structure and the photophysical behavior in different environments. In this work we have investigated the excited-state dynamics of three acceptor-donor-acceptor molecules based on benzodithiophene and BODIPY in solvents of different polarities using a combination of ultrafast spectroscopy and DFT-based electronic structure calculations. Transient absorption spectra show that upon photoexcitation an initial excited species with an induced absorption band in the near-infrared regime is formed independent of the solvent polarity. The subsequent photophysical processes strongly depend on the solvent polarity. In non-polar toluene this initial excited state undergoes a structural relaxation leading to a delocalized state with partial charge transfer character, while in the more polar tetrahydrofuran a fully charge separated state is formed. The results clearly show how factors such as donor-acceptor distance and restricted rotational motion by steric hindrance can be used to tune the excited state photophysics to optimize such systems for specific applications.

10.
Phys Chem Chem Phys ; 22(44): 25514-25521, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164016

RESUMO

Structure-property relationships of donor-π-acceptor (D-π-A) type molecular dyad (pp-AD) and triads (pp-ADA and Me-pp-ADA) based on benzodithiophene and BODIPY with biphenyl spacers have been reported. Rotors pp-AD and pp-ADA showed efficient twisted intramolecular charge transfer (TICT) with near infrared (NIR) emissions at ∼712 nm and ∼725 nm with (pseudo-)Stokes shifts of ∼208 nm and ∼221 nm, respectively, and prominent solvatochromism. A structurally similar triad, Me-pp-ADA, with tetramethyl substituents on the BODIPY core instead was TICT inactive and exhibited excitation energy transfer with a transfer efficiency of ∼88% as revealed using steady state emission and transient absorption measurements. Rotors pp-AD and pp-ADA showed NIR emission with an enhancement in intensity with the addition of water in THF solution as well as a pronounced change in emission intensity with temperature and viscosity variations, which justify their utility as temperature and viscosity sensors. Furthermore, the linear correlation of lifetime with fluorescence intensity ratios of the donor and acceptor justifies the rigidochromic behaviour of these rotors.

11.
J Chem Phys ; 153(14): 144302, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086833

RESUMO

Directing energy and charge transfer processes in light-harvesting antenna systems is quintessential for optimizing the efficiency of molecular devices for artificial photosynthesis. In this work, we report a novel synthetic method to construct two regioisomeric antenna molecules (1-D2A2 and 7-D2A2), in which the 4-(n-butylamino)naphthalene monoimide energy and electron donor is attached to the perylene monoimide diester (PMIDE) acceptor at the 1- and 7-bay positions, respectively. The non-symmetric structure of PMIDE renders a polarized distribution of the frontier molecular orbitals along the long axis of this acceptor moiety, which differentiates the electron coupling between the donor, attached at either the 1- or the 7-position, and the acceptor. We demonstrate that directional control of the photo-driven charge transfer process has been obtained by engineering the molecular structure of the light-harvesting antenna molecules.


Assuntos
Naftalimidas/química , Perileno/análogos & derivados , Transferência de Energia , Luz , Naftalimidas/síntese química , Naftalimidas/efeitos da radiação , Perileno/efeitos da radiação , Eletricidade Estática
12.
Nat Commun ; 10(1): 5342, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767841

RESUMO

Despite intense research into the optoelectronic properties of metal halide perovskites (MHPs), sub-bandgap absorption in MHPs remains largely unexplored. Here we recorded two-photon absorption spectra of MHPs using the time-resolved microwave conductivity technique. A two-step upward trend is observed in the two-photon absorption spectrum for methylammonium lead iodide, and some analogues, which implies that the commonly used scaling law is not applicable to MHPs. This aspect is further confirmed by temperature-dependent conductivity measurements. Using an empirical multiband tight binding model, spectra for methylammonium lead iodide were calculated by integration over the entire Brillouin zone, showing compelling similarity with experimental results. We conclude that the second upward trend in the two-photon absorption spectrum originates from additional optical transitions to the heavy and light electron bands formed by the strong spin-orbit coupling. Hence, valuable insight can be obtained in the opto-electronic properties of MHPs by sub-bandgap spectroscopy, complemented by modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA