Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Oncogene ; 41(12): 1809-1820, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35140332

RESUMO

Molecular reprogramming of stromal microarchitecture by tumour-derived extracellular vesicles (EVs) is proposed to favour pre-metastatic niche formation. We elucidated the role of extravesicular tissue inhibitor of matrix metalloproteinase-1 (TIMP1EV) in pro-invasive extracellular matrix (ECM) remodelling of the liver microenvironment to aid tumour progression in colorectal cancer (CRC). Immunohistochemistry analysis revealed a high expression of stromal TIMP1 in the invasion front that was associated with poor progression-free survival in patients with colorectal liver metastases. Molecular analysis identified TIMP1EV enrichment in CRC-EVs as a major factor in the induction of TIMP1 upregulation in recipient fibroblasts. Mechanistically, we proved that EV-mediated TIMP1 upregulation in recipient fibroblasts induced ECM remodelling. This effect was recapitulated by human serum-derived EVs providing strong evidence that CRC release active EVs into the blood circulation of patients for the horizontal transfer of malignant traits to recipient cells. Moreover, EV-associated TIMP1 binds to HSP90AA, a heat-shock protein, and the inhibition of HSP90AA on human-derived serum EVs attenuates TIMP1EV-mediated ECM remodelling, rendering EV-associated TIMP1 a potential therapeutic target. Eventually, in accordance with REMARK guidelines, we demonstrated in three independent cohorts that EV-bound TIMP1 is a robust circulating biomarker for a non-invasive, preoperative risk stratification in patients with colorectal liver metastases.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Neoplasias Hepáticas , Neoplasias Colorretais/patologia , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Prognóstico , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Microambiente Tumoral
3.
Mol Cancer ; 20(1): 88, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116687

RESUMO

BACKGROUND: Cancer metastases are the main cause of lethality. The five-year survival rate for patients diagnosed with advanced stage oral cancer is 30%. Hence, the identification of novel therapeutic targets is an urgent need. However, tumors are comprised of a heterogeneous collection of cells with distinct genetic and molecular profiles that can differentially promote metastasis making therapy development a challenging task. Here, we leveraged intratumoral heterogeneity in order to identify drivers of cancer cell motility that might be druggable targets for anti-metastasis therapy. METHODS: We used 2D migration and 3D matrigel-based invasion assays to characterize the invasive heterogeneity among and within four human oral cancer cell lines in vitro. Subsequently, we applied mRNA-sequencing to map the transcriptomes of poorly and strongly invasive subclones as well as primary tumors and matched metastasis. RESULTS: We identified SAS cells as a highly invasive oral cancer cell line. Clonal analysis of SAS yielded a panel of 20 subclones with different invasive capacities. Integrative gene expression analysis identified the Lymphocyte cell-specific protein-tyrosine kinase (LCK) as a druggable target gene associated with cancer cell invasion and metastasis. Inhibition of LCK using A-770041 or dasatinib blocked invasion of highly aggressive SAS cells. Interestingly, reduction of LCK activity increased the formation of adherens junctions and induced cell differentiation. CONCLUSION: Analysis of invasive heterogeneity led to the discovery of LCK as an important regulator of motility in oral cancer cells. Hence, small molecule mediated inhibition of LCK could be a promising anti-metastasis therapy option for oral cancer patients.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Dasatinibe/farmacologia , Humanos , Neoplasias Bucais/genética , Invasividade Neoplásica/patologia , Transcriptoma
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957697

RESUMO

Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundário , Movimento Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Metástase Neoplásica , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA