Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771864

RESUMO

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Assuntos
Aves , Voo Animal , Vento , Animais , Voo Animal/fisiologia , Aves/fisiologia , Orientação/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Migração Animal/fisiologia
2.
R Soc Open Sci ; 11(1): 230666, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179081

RESUMO

Understanding the ontogeny of diving behaviour in marine megafauna is crucial owing to its influence on foraging success, energy budgets, and mortality. We compared the ontogeny of diving behaviour in two closely related species-northern elephant seals (Mirounga angustirostris, n = 4) and southern elephant seals (Mirounga leonina, n = 9)-to shed light on the ecological processes underlying migration. Although both species have similar sizes and behaviours as adults, we discovered that juvenile northern elephant seals have superior diving development, reaching 260 m diving depth in just 30 days, while southern elephant seals require 160 days. Similarly, northern elephant seals achieve dive durations of approximately 11 min on their first day of migration, while southern elephant seals take 125 days. The faster physiological maturation of northern elephant seals could be related to longer offspring dependency and post-weaning fast durations, allowing them to develop their endogenous oxygen stores. Comparison across both species suggests that weaned seal pups face a trade-off between leaving early with higher energy stores but poorer physiological abilities or leaving later with improved physiology but reduced fat stores. This trade-off might be influenced by their evolutionary history, which shapes their migration behaviours in changing environments over time.

3.
Proc Natl Acad Sci U S A ; 121(6): e2312438121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285933

RESUMO

How individual animals respond to climate change is key to whether populations will persist or go extinct. Yet, few studies investigate how changes in individual behavior underpin these population-level phenomena. Shifts in the distributions of migratory animals can occur through adaptation in migratory behaviors, but there is little understanding of how selection and plasticity contribute to population range shift. Here, we use long-term geolocator tracking of Balearic shearwaters (Puffinus mauretanicus) to investigate how year-to-year changes in individual birds' migrations underpin a range shift in the post-breeding migration. We demonstrate a northward shift in the post-breeding range and show that this is brought about by individual plasticity in migratory destination, with individuals migrating further north in response to changes in sea-surface temperature. Furthermore, we find that when individuals migrate further, they return faster, perhaps minimizing delays in return to the breeding area. Birds apparently judge the increased distance that they will need to migrate via memory of the migration route, suggesting that spatial cognitive mechanisms may contribute to this plasticity and the resulting range shift. Our study exemplifies the role that individual behavior plays in populations' responses to environmental change and highlights some of the behavioral mechanisms that might be key to understanding and predicting species persistence in response to climate change.


Assuntos
Migração Animal , Mudança Climática , Humanos , Animais , Migração Animal/fisiologia , Estações do Ano , Aves/fisiologia , Cruzamento
4.
Elife ; 122023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814539

RESUMO

The relationship between the environment and marine animal small-scale behavior is not fully understood. This is largely due to the difficulty in obtaining environmental datasets with a high spatiotemporal precision. The problem is particularly pertinent in assessing the influence of environmental factors in rapid, high energy-consuming behavior such as seabird take-off. To fill the gaps in the existing environmental datasets, we employed novel techniques using animal-borne sensors with motion records to estimate wind and ocean wave parameters and evaluated their influence on wandering albatross take-off patterns. Measurements revealed that wind speed and wave heights experienced by wandering albatrosses during take-off ranged from 0.7 to 15.4 m/s and 1.6 to 6.4 m, respectively. The four indices measured (flapping number, frequency, sea surface running speed, and duration) also varied with the environmental conditions (e.g., flapping number varied from 0 to over 20). Importantly, take-off was easier under higher wave conditions than under lower wave conditions at a constant wind speed, and take-off effort increased only when both wind and waves were gentle. Our data suggest that both ocean waves and winds play important roles for albatross take-off and advances our current understanding of albatross flight mechanisms.


Wandering albatrosses are large seabirds with one of the most impressive wingspans found in the animal kingdom. While they spend most of their time efficiently gliding above the waves, they do have to regularly land on sea to snatch their prey. To resume flight, the birds turn into the wind and flap their wings as they run on the surface of the ocean; this causes their heart to beat three to four times faster than normal. In contrast, flying barely leads to a change in pulse rate compared to rest. As for many other marine birds, sea take-offs therefore represent one of the major energy costs that albatrosses face when out foraging. Scientists have long assumed that the amount of effort required for this manoeuvre depends on factors such as wind speed and, potentially, the height of the waves. However, this is difficult to establish for sure because direct information about the environment that a bird faces as it takes off is rarely available. Often, the best that researchers can do is to reconstruct this data based on global weather patterns, ocean climatic models or evidence collected from nearby locations. To address this problem, Uesaka et al. devised innovative ways to use data from animal-borne sensors. They equipped 44 albatrosses with these instruments and recorded over 1,500 hours of foraging sea trips. Wind parameters such as speed and direction were estimated based on the animals' flying paths, and wave height calculated from their floating motion. Sensor data also gave an insight into the energy cost of each take-off, which was estimated based on four parameters (running duration, running speed, number of wing flaps, and flapping frequency). The analyses confirmed that albatrosses take off into a headwind, with stronger winds reducing the amount of effort required. However, wave height also had a profound impact, suggesting that this parameter should be included in future studies. Overall, the birds flapped their wings less and ran on the surface of the water for shorter amounts of time when the wind was strong, or the waves were high. Even with weak winds, take offs were easier when waves were taller, and they were most costly when both the sea and wind were calm. The work by Uesaka et al. helps to capture how environmental factors influence the energy balance of albatrosses and other marine birds. As ocean weather patterns become more volatile and extreme climate events more frequent, such knowledge is acutely needed to understand how these creatures may respond to their changing world.


Assuntos
Voo Animal , Vento , Animais , Aves , Comportamento Animal , Movimento (Física)
5.
Oecologia ; 203(1-2): 63-78, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37833549

RESUMO

In wild vertebrates, the increase of breeding success with advancing age has been extensively studied through laying date, clutch size, hatching success, and fledging success. However, to better evaluate the influence of age on reproductive performance in species with high reproductive success, assessing not only reproductive success but also other proxies of reproductive performance appear crucial. For example, the quality of developmental conditions and offspring phenotype can provide robust and complementary information on reproductive performance. In long-lived vertebrate species, several proxies of developmental conditions can be used to estimate the quality of the produced offspring (i.e., body size, body condition, corticosterone levels, and telomere length), and therefore, their probability to survive. By sampling chicks reared by known-aged mothers, we investigated the influence of maternal age on reproductive performance and offspring quality in a long-lived bird species, the snow petrel (Pagodroma nivea). Older females bred and left their chick alone earlier. Moreover, older females had larger chicks that grew faster, and ultimately, those chicks had a higher survival probability at the nest. In addition, older mothers produced chicks with a higher sensitivity to stress, as shown by moderately higher stress-induced corticosterone levels. Overall, our study demonstrated that maternal age is correlated to reproductive performance (hatching date, duration of the guarding period and survival) and offspring quality (body size, growth rate and sensitivity to stress), suggesting that older individuals provide better parental cares to their offspring. These results also demonstrate that maternal age can affect the offspring phenotype with potential long-term consequences.


Assuntos
Aves , Corticosterona , Humanos , Animais , Feminino , Idoso , Idade Materna , Reprodução , Tamanho Corporal
6.
Proc Natl Acad Sci U S A ; 120(42): e2218679120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812719

RESUMO

The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments.


Assuntos
Aves , Sinais (Psicologia) , Animais , Aves/fisiologia , Vento , Olfato , Som
7.
Ecotoxicology ; 32(8): 1050-1061, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615819

RESUMO

Mercury (Hg) pollution is a global problem affecting remote areas of the open ocean, but the bioaccumulation of this neurotoxic pollutant in tropical top predators remains poorly documented. The objective of this study was to determine Hg contamination of the seabird community nesting on Clipperton Island using blood and feathers to investigate short and longer-term contamination, respectively. We examined the significance of various factors (species, sex, feeding habitat [δ13C] and trophic position [δ15N]) on Hg concentrations in six seabird species. Among species, Great Frigatebirds had the highest Hg concentrations in blood and feathers, boobies had intermediate values, and Brown Noddies and Sooty Terns the lowest. At the interspecific level, although δ13C values segregated boobies from frigatebirds and noddies/terns, Hg concentrations were explained by neither δ13C nor δ15N values. At the intraspecific level, both Hg concentrations in blood and feathers show relatively small variations (16-32 and 26-74%, respectively), suggesting that feeding ecology had low seasonal variation among individuals. Despite most species being sexually dimorphic, differences in Hg contamination according to sex was detected only in Brown Boobies during the breeding period. Indeed, female Brown Boobies feed at a higher trophic level and in a different area than males during this period, resulting in higher blood Hg concentrations. The present study also shows that most of the seabirds sampled at Clipperton Island had little or no exposure to Hg toxicity, with 30% in the no risk category and 70% in the low risk category.


Assuntos
Charadriiformes , Mercúrio , Humanos , Masculino , Animais , Feminino , Mercúrio/análise , Oceano Pacífico , Monitoramento Ambiental/métodos , Aves , Ecossistema
8.
J Anim Ecol ; 92(9): 1730-1742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365766

RESUMO

Behavioural plasticity can allow populations to adjust to environmental change when genetic evolution is too slow to keep pace. However, its constraints are not well understood. Personality is known to shape individual behaviour, but its relationship to behavioural plasticity is unclear. We studied the relationship between boldness and behavioural plasticity in response to wind conditions in wandering albatrosses (Diomedea exulans). We fitted multivariate hidden Markov models to an 11-year GPS dataset collected from 294 birds to examine whether the probability of transitioning between behavioural states (rest, prey search and travel) varied in response to wind, boldness and their interaction. We found that movement decisions varied with boldness, with bolder birds showing preferences for travel, and shyer birds showing preferences for search. For females, these effects depended on wind speed. In strong winds, which are optimal for movement, females increased time spent in travel, while in weaker winds, shyer individuals showed a slight preference for search, while bolder individuals maintained preference for travel. Our findings suggest that individual variation in behavioural plasticity may limit the capacity of bolder females to adjust to variable conditions and highlight the important role of behavioural plasticity in population responses to climate change.


Assuntos
Comportamento Alimentar , Vento , Feminino , Animais , Comportamento Alimentar/fisiologia , Aves/fisiologia , Personalidade
9.
Curr Biol ; 33(6): 1179-1184.e3, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36827987

RESUMO

Storms can cause widespread seabird stranding and wrecking,1,2,3,4,5 yet little is known about the maximum wind speeds that birds are able to tolerate or the conditions they avoid. We analyzed >300,000 h of tracking data from 18 seabird species, including flapping and soaring fliers, to assess how flight morphology affects wind selectivity, both at fine scales (hourly movement steps) and across the breeding season. We found no general preference or avoidance of particular wind speeds within foraging tracks. This suggests seabird flight morphology is adapted to a "wind niche," with higher wing loading being selected in windier environments. In support of this, wing loading was positively related to the median wind speeds on the breeding grounds, as well as the maximum wind speeds in which birds flew. Yet globally, the highest wind speeds occur in the tropics (in association with tropical cyclones) where birds are morphologically adapted to low median wind speeds. Tropical species must therefore show behavioral responses to extreme winds, including long-range avoidance of wind speeds that can be twice their operable maxima. By contrast, Procellariiformes flew in almost all wind speeds they encountered at a seasonal scale. Despite this, we describe a small number of cases where albatrosses avoided strong winds at close range, including by flying into the eye of the storm. Extreme winds appear to pose context-dependent risks to seabirds, and more information is needed on the factors that determine the hierarchy of risk, given the impact of global change on storm intensity.6,7.


Assuntos
Voo Animal , Vento , Animais , Voo Animal/fisiologia , Aves/fisiologia , Adaptação Fisiológica , Comportamento Alimentar/fisiologia
10.
Proc Biol Sci ; 290(1990): 20222252, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36598019

RESUMO

Animals have to develop novel behaviours to adapt to anthropogenic activities or environmental changes. Fishing vessels constitute a recent feature that attracts albatrosses in large numbers. While they provide a valuable food source through offal and bait, they cause mortalities through bycatch, such that selection on vessel attraction will depend on the cost-benefit balance. We examine whether attraction to fishing and other vessels changes through the lifetime of great albatrosses, and show that attraction differed between age classes, sexes and personality. Juveniles encountered fewer vessels than adults, but also showed a lower attraction to vessels when encountered. Attraction rates, especially for fishing vessels, increased through immaturity to peak during adulthood, decreasing with old age. Shy females had lower attraction to vessels and shy males remained at vessels longer, suggesting that bolder individuals may outcompete shyer ones, with positive consequences for mass gain. These results suggest that attraction to vessels is a learned process, leading to an increase with age, and is not the result of preferential attraction to new objects by juveniles. Overall, our findings have important conservation implications as a result of potential strong differential selection on the risk of bycatch for age classes, personality types, populations and species.


Assuntos
Pesqueiros , Caça , Animais , Aves
11.
Ecol Evol ; 12(12): e9621, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540077

RESUMO

Long-lived monogamous species gain long-term fitness benefits by equalizing effort during biparental care. For example, many seabird species coordinate care by matching foraging trip durations within pairs. Age affects coordination in some seabird species; however, the impact of other intrinsic traits, including personality, on potential intraspecific variation in coordination strength is less well understood. The impacts of pair members' intrinsic traits on trip duration and coordination strength were investigated using data from saltwater immersion loggers deployed on 71 pairs of wandering albatrosses Diomedea exulans. These were modeled against pair members' age, boldness, and their partner's previous trip duration. At the population level, the birds exhibited some coordination of parental care that was of equal strength during incubation and chick-brooding. However, there was low variation in coordination between pairs and coordination strength was unaffected by the birds' boldness or age in either breeding stage. Surprisingly, during incubation, foraging trip duration was mainly driven by partner traits, as birds which were paired to older and bolder partners took shorter trips. During chick-brooding, shorter foraging trips were associated with greater boldness in focal birds and their partners, but age had no effect. These results suggest that an individual's assessment of their partner's capacity or willingness to provide care may be a major driver of trip duration, thereby highlighting the importance of accounting for pair behavior when studying parental care strategies.

12.
Ecol Monogr ; 92(3): e1522, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36248260

RESUMO

Many animals form long-term monogamous pair bonds, and the disruption of a pair bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success [LRS], life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, so the population is male-skewed. Therefore, we first posited that males would show higher widowhood rates negatively correlated with fishing effort and females would have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce could be an adaptive strategy, whereby individuals improved breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions could reduce survival and breeding probabilities owing to the cost of remating processes, with important consequences for life-history outcomes. As expected, we showed that males had higher widowhood rates than females and females had higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce was likely nonadaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the so-called forced divorce hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in LRS only for divorced and widowed males, respectively, owing to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals were more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation.

13.
Biol Lett ; 18(9): 20220301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099936

RESUMO

Personality predicts divorce rates in humans, yet how personality traits affect divorce in wild animals remains largely unknown. In a male-skewed population of wandering albatross (Diomedea exulans), we showed that personality predicts divorce; shyer males exhibited higher divorce rates than bolder males but no such relationship was found in females. We propose that divorce may be caused by the intrusion of male competitors and shyer males divorce more often because of their avoidance of territorial aggression, while females have easier access to mates regardless of their personality. Thus, personality may have important implications for the dynamics of social relationships.


Assuntos
Aves , Divórcio , Animais , Feminino , Humanos , Masculino , Personalidade
14.
Ecol Lett ; 25(10): 2120-2131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981228

RESUMO

Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, that is to chance. Quantifying the contributions of heterogeneity and chance is essential to understand natural variability. Interindividual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favourable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.


Assuntos
Clima , Características de História de Vida , Animais , Regiões Antárticas , Aves , Reprodução
15.
J R Soc Interface ; 19(193): 20220168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000229

RESUMO

Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Aves
16.
Mol Genet Genomics ; 297(1): 183-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921614

RESUMO

Interspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin's prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray's prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray's prion that originated through a colonisation event from St Paul. We show that macgillivrayi's medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray's prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


Assuntos
Bico/anatomia & histologia , Aves , Evolução Molecular , Animais , Regiões Antárticas , Oceano Atlântico , Aves/anatomia & histologia , Aves/classificação , Aves/genética , Fluxo Gênico , Variação Genética , Hibridização Genética , Oceano Índico , Ilhas do Oceano Índico , Fenótipo , Filogenia
17.
PNAS Nexus ; 1(1): pgac023, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36712794

RESUMO

The largest extinct volant birds (Pelagornis sandersi and Argentavis magnificens) and pterosaurs (Pteranodon and Quetzalcoatlus) are thought to have used wind-dependent soaring flight, similar to modern large birds. There are 2 types of soaring: thermal soaring, used by condors and frigatebirds, which involves the use of updrafts to ascend and then glide horizontally; and dynamic soaring, used by albatrosses, which involves the use of wind speed differences with height above the sea surface. Previous studies have suggested that P. sandersi used dynamic soaring, while A. magnificens and Quetzalcoatlus used thermal soaring. For Pteranodon, there is debate over whether they used dynamic or thermal soaring. However, the performance and wind speed requirements of dynamic and thermal soaring for these species have not yet been quantified comprehensively. We quantified these values using aerodynamic models and compared them with that of extant birds. For dynamic soaring, we quantified maximum travel speeds and maximum upwind speeds. For thermal soaring, we quantified the animal's sinking speed circling at a given radius and how far it could glide losing a given height. Our results confirmed those from previous studies that A. magnificens and Pteranodon used thermal soaring. Conversely, the results for P. sandersi and Quetzalcoatlus were contrary to those from previous studies. P. sandersi used thermal soaring, and Quetzalcoatlus had a poor ability both in dynamic and thermal soaring. Our results demonstrate the need for comprehensive assessments of performance and required wind conditions when estimating soaring styles of extinct flying species.

18.
Glob Chang Biol ; 27(22): 5773-5785, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34386992

RESUMO

Ocean circulation connects geographically distinct ecosystems across a wide range of spatial and temporal scales via exchanges of physical and biogeochemical properties. Remote oceanographic processes can be especially important for ecosystems in the Southern Ocean, where the Antarctic Circumpolar Current transports properties across ocean basins through both advection and mixing. Recent tracking studies have indicated the existence of two large-scale, open ocean habitats in the Southern Ocean used by grey petrels (Procellaria cinerea) from two populations (i.e., Kerguelen and Antipodes islands) during their nonbreeding season for extended periods during austral summer (i.e., October to February). In this work, we use a novel combination of large-scale oceanographic observations, surface drifter data, satellite-derived primary productivity, numerical adjoint sensitivity experiments, and output from a biogeochemical state estimate to examine local and remote influences on these grey petrel habitats. Our aim is to understand the oceanographic features that control these isolated foraging areas and to evaluate their ecological value as oligotrophic open ocean habitats. We estimate the minimum local primary productivity required to support these populations to be much <1% of the estimated local primary productivity. The region in the southeast Indian Ocean used by the birds from Kerguelen is connected by circulation to the productive Kerguelen shelf. In contrast, the region in the south-central Pacific Ocean used by seabirds from the Antipodes is relatively isolated suggesting it is more influenced by local factors or the cumulative effects of many seasonal cycles. This work exemplifies the potential use of predator distributions and oceanographic data to highlight areas of the open ocean that may be more dynamic and productive than previously thought. Our results highlight the need to consider advective connections between ecosystems in the Southern Ocean and to re-evaluate the ecological relevance of oligotrophic Southern Ocean regions from a conservation perspective.


Assuntos
Aves , Ecossistema , Animais , Regiões Antárticas , Oceano Índico , Estações do Ano
19.
J Anim Ecol ; 90(10): 2404-2420, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091891

RESUMO

Sexual competition is increasingly recognized as an important selective pressure driving species distributions. However, few studies have investigated the relative importance of interpopulation versus intrapopulation competition in relation to habitat availability and selection. To explain spatial segregation between sexes that often occurs in non-territorial and central place foragers, such as seabirds, two hypotheses are commonly used. The 'competitive exclusion' hypothesis states that dominant individuals should exclude subordinate individuals through direct competition, whereas the 'niche divergence' hypothesis states that segregation occurs due to past competition and habitat specialization. We tested these hypotheses in two populations of an extreme wide-ranging and sexually dimorphic seabird, investigating the relative role of intrapopulation and interpopulation competition in influencing sex-specific distribution and habitat preferences. Using GPS loggers, we tracked 192 wandering albatrosses Diomedea exulans during four consecutive years (2016-2019), from two neighbouring populations in the Southern Ocean (Prince Edward and Crozet archipelagos). We simulated pseudo-tracks to create a null spatial distribution and used Kernel Density Estimates (KDE) and Resource Selection Functions (RSF) to distinguish the relative importance of within- versus between-population competition. Kernel Density Estimates showed that only intrapopulation sexual segregation was significant for each monitoring year, and that tracks between the two colonies resulted in greater overlap than expected from the null distribution, especially for the females. RSF confirmed these results and highlighted key at-sea foraging areas, even if the estimated of at-sea densities were extremely low. These differences in selected areas between sites and sexes were, however, associated with high interannual variability in habitat preferences, with no clear specific preferences per site and sex. Our results suggest that even with low at-sea population densities, historic intrapopulation competition in wide-ranging seabirds may have led to sexual dimorphism and niche specialization, favouring the 'niche divergence' hypothesis. In this study, we provide a protocol to study competition within as well as between populations of central place foragers. This is relevant for understanding their distribution patterns and population regulation, which could potentially improve management of threatened populations.


Assuntos
Aves , Comportamento Alimentar , Animais , Ecossistema , Feminino , Masculino , Densidade Demográfica , Caracteres Sexuais
20.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34132335

RESUMO

The period of emancipation in seabirds, when juveniles change from a terrestrial existence to a life at sea, is associated with many challenges. Apart from finding favourable foraging sites, they have to develop effective prey search patterns and physiological capacities that enable them to capture sufficient prey to meet their energetic needs. Animals that dive to forage, such as king penguins (Aptenodytes patagonicus), need to acquire an adequate breath-hold capacity, allowing them to locate and capture prey at depth. To investigate the ontogeny of their dive capacity and foraging performance, we implanted juvenile king penguins before their first departure to sea and also adult breeders with a data-logger recording pressure and temperature. We found that juvenile king penguins possess a remarkable dive capacity when leaving their natal colony, enabling them to conduct dives in excess of 100 m within their first week at sea. Despite this, juvenile dive/foraging performance, investigated in relation to dive depth, remained below the adult level throughout their first year at sea, probably reflecting physiological limitations as a result of incomplete maturation. A significantly shallower foraging depth of juveniles, particularly during their first 5 months at sea, could also indicate differences in foraging strategy and targeted prey. The initially greater wiggle rate suggests that juveniles fed opportunistically and also targeted different prey from adults and/or that many of the wiggles of juveniles reflect unsuccessful prey-capture attempts, indicating a lower foraging proficiency. After 5 months, this difference disappeared, suggesting sufficient physical maturation and improvement of juvenile foraging skills.


Assuntos
Mergulho , Spheniscidae , Animais , Comportamento Animal , Comportamento Alimentar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA