Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826379

RESUMO

Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-ß receptor-mediated signaling, both key regulators of proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFß receptor-mediated signaling. In optimized HOME0, normal human esophageal organoid formation was improved, whereas IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.

2.
Carcinogenesis ; 45(1-2): 95-106, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978873

RESUMO

The alcohol metabolite acetaldehyde is a potent human carcinogen linked to esophageal squamous cell carcinoma (ESCC) initiation and development. Aldehyde dehydrogenase 2 (ALDH2) is the primary enzyme that detoxifies acetaldehyde in the mitochondria. Acetaldehyde accumulation causes genotoxic stress in cells expressing the dysfunctional ALDH2E487K dominant negative mutant protein linked to ALDH2*2, the single nucleotide polymorphism highly prevalent among East Asians. Heterozygous ALDH2*2 increases the risk for the development of ESCC and other alcohol-related cancers. Despite its prevalence and link to malignant transformation, how ALDH2 dysfunction influences ESCC pathobiology is incompletely understood. Herein, we characterize how ESCC and preneoplastic cells respond to alcohol exposure using cell lines, three-dimensional organoids and xenograft models. We find that alcohol exposure and ALDH2*2 cooperate to increase putative ESCC cancer stem cells with high CD44 expression (CD44H cells) linked to tumor initiation, repopulation and therapy resistance. Concurrently, ALHD2*2 augmented alcohol-induced reactive oxygen species and DNA damage to promote apoptosis in the non-CD44H cell population. Pharmacological activation of ALDH2 by Alda-1 inhibits this phenotype, suggesting that acetaldehyde is the primary driver of these changes. Additionally, we find that Aldh2 dysfunction affects the response to cisplatin, a chemotherapeutic commonly used for the treatment of ESCC. Aldh2 dysfunction facilitated enrichment of CD44H cells following cisplatin-induced oxidative stress and cell death in murine organoids, highlighting a potential mechanism driving cisplatin resistance. Together, these data provide evidence that ALDH2 dysfunction accelerates ESCC pathogenesis through enrichment of CD44H cells in response to genotoxic stressors such as environmental carcinogens and chemotherapeutic agents.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Neoplasias Esofágicas/patologia , Fatores de Risco , Consumo de Bebidas Alcoólicas/genética , Cisplatino/farmacologia , Aldeído-Desidrogenase Mitocondrial/genética , Etanol/metabolismo , Acetaldeído/metabolismo , Transformação Celular Neoplásica , Células-Tronco Neoplásicas/patologia , Álcool Desidrogenase/genética
3.
Transplant Cell Ther ; 29(3): 164.e1-164.e9, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35995393

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a curative treatment for patients with many different blood and immune diseases; however, current treatment regimens contain non-specific chemotherapy and/or irradiation conditioning, which carry both short-term and long-term toxicities. The use of such agents may be particularly harmful for patients with Fanconi anemia (FA), who have genetic mutations resulting in deficiencies in DNA repair, leading to increased sensitivity to genotoxic agents. mAb-based conditioning has been proposed as an alternative conditioning strategy for HSCT that minimizes these toxicities by eliminating collateral tissue damage. Given the high need for improved treatments for FA patients, we aimed to evaluate the efficacy of different αCD117 mAb agents and immunosuppression on hematopoietic stem cell (HSC) depletion and explored their ability to safely establish therapeutic donor hematopoiesis post-HSCT in FA disease models. We evaluated the effects of different concentrations of αCD117 mAbs in vitro and in vivo on HSC growth and depletion. To further assess the efficacy of mAb-based conditioning, Fancd2-/- animals were treated with αCD117 mAb and combination agents with αCD47 mAb and antibody-drug-conjugates (ADCs) for syngeneic HSCT. Immunosuppression αCD4 mAb was added to all in vivo experiments due to a slightly mismatched background between the donor grafts and recipients. Immunosuppressant cocktails were also given to Fancd2-/- animals to evaluate the efficacy of mAb-based conditioning in the haploidentical setting. Statistical analyses were done using the unpaired t-test. We found that antagonistic αCD117 mAbs alone do not deplete host HSCs or enhance HSCT effectively in FA mouse models; however, the potency of αCD117 mAbs can be safely augmented through combination with αCD47 mAbs and with ADCs, both of which lead to profound HSC depletion and establishment of long-term donor engraftment post-syngeneic HSCT. This is the first time these approaches have been tested in parallel in any disease setting, with the greatest donor engraftment observed after CD117-ADC conditioning. Interestingly, our data also suggest that HSC-targeted conditioning is not necessary in HSCT for FA, as high donor HSC engraftment was observed with mAb-based immune suppression alone with immunologically matched and mismatched haploidentical grafts. These results demonstrate the safety and efficacy of several different non-genotoxic mAb-based conditioning strategies in the FA setting. In addition, they show that if sufficient immunosuppression is given to obtain initial donor HSC engraftment, turnover of a majority of the hematolymphoid system can result, likely owing to the survival advantage of wild-type HSCs over FA HSCs. Such non-toxic all-mAb-based conditioning strategies could be transformative for FA patients and those with other hematolymphoid diseases.


Assuntos
Anemia de Fanconi , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Anemia de Fanconi/etiologia , Anemia de Fanconi/terapia , Condicionamento Pré-Transplante/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores , Terapia de Imunossupressão/métodos , Anticorpos Monoclonais
4.
Front Immunol ; 14: 1328005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38347954

RESUMO

Biallelic mutations in the ACP5 gene cause spondyloenchondrodysplasia with immune dysregulation (SPENCDI). SPENCDI is characterized by the phenotypic triad of skeletal dysplasia, innate and adaptive immune dysfunction, and variable neurologic findings ranging from asymptomatic brain calcifications to severe developmental delay with spasticity. Immune dysregulation in SPENCDI is often refractory to standard immunosuppressive treatments. Here, we present the cases of two patients with SPENCDI and recalcitrant autoimmune cytopenias who demonstrated a favorable clinical response to targeted JAK inhibition over a period of more than 3 years. One of the patients exhibited steadily rising IgG levels and a bone marrow biopsy revealed smoldering multiple myeloma. A review of the literature uncovered that approximately half of the SPENCDI patients reported to date exhibited increased IgG levels. Screening for multiple myeloma in SPENCDI patients with rising IgG levels should therefore be considered.


Assuntos
Anemia Hemolítica Autoimune , Doenças Autoimunes , Imunoglobulina G , Síndromes de Imunodeficiência , Janus Quinase 2 , Osteocondrodisplasias , Trombocitopenia , Humanos , Fosfatase Ácida Resistente a Tartarato/genética , Janus Quinase 1
6.
Acta Neuropathol Commun ; 7(1): 190, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31829281

RESUMO

Aldehyde dehydrogenase 2 deficiency (ALDH2*2) causes facial flushing in response to alcohol consumption in approximately 560 million East Asians. Recent meta-analysis demonstrated the potential link between ALDH2*2 mutation and Alzheimer's Disease (AD). Other studies have linked chronic alcohol consumption as a risk factor for AD. In the present study, we show that fibroblasts of an AD patient that also has an ALDH2*2 mutation or overexpression of ALDH2*2 in fibroblasts derived from AD patients harboring ApoE ε4 allele exhibited increased aldehydic load, oxidative stress, and increased mitochondrial dysfunction relative to healthy subjects and exposure to ethanol exacerbated these dysfunctions. In an in vivo model, daily exposure of WT mice to ethanol for 11 weeks resulted in mitochondrial dysfunction, oxidative stress and increased aldehyde levels in their brains and these pathologies were greater in ALDH2*2/*2 (homozygous) mice. Following chronic ethanol exposure, the levels of the AD-associated protein, amyloid-ß, and neuroinflammation were higher in the brains of the ALDH2*2/*2 mice relative to WT. Cultured primary cortical neurons of ALDH2*2/*2 mice showed increased sensitivity to ethanol and there was a greater activation of their primary astrocytes relative to the responses of neurons or astrocytes from the WT mice. Importantly, an activator of ALDH2 and ALDH2*2, Alda-1, blunted the ethanol-induced increases in Aß, and the neuroinflammation in vitro and in vivo. These data indicate that impairment in the metabolism of aldehydes, and specifically ethanol-derived acetaldehyde, is a contributor to AD associated pathology and highlights the likely risk of alcohol consumption in the general population and especially in East Asians that carry ALDH2*2 mutation.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Etanol/toxicidade , Idoso , Idoso de 80 Anos ou mais , Aldeídos , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Etanol/administração & dosagem , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Técnicas de Introdução de Genes , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação/efeitos dos fármacos , Mutação/genética
8.
Nat Commun ; 10(1): 2021, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028274

RESUMO

The original version of this Article omitted the following from the Acknowledgements: "G.B. acknowledges the support from the Cancer Prevention and Research Institute of Texas (RR140081 and RR170721)."This has now been corrected in both the PDF and HTML versions of the Article.

9.
Nat Commun ; 10(1): 1634, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967552

RESUMO

Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy, we achieve up to 20% targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45%) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum, our study provides specificity, toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.


Assuntos
DNA Complementar/genética , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas , Subunidade gama Comum de Receptores de Interleucina/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Animais , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Códon de Iniciação/genética , Dependovirus , Éxons/genética , Sangue Fetal/citologia , Vetores Genéticos/genética , Voluntários Saudáveis , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Mutação , Parvovirinae/genética , Cultura Primária de Células , Fatores de Tempo , Transdução Genética/métodos , Quimeras de Transplante/genética , Transplante Heterólogo/métodos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
10.
Nat Med ; 25(2): 249-254, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692695

RESUMO

The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.


Assuntos
Imunidade Adaptativa , Proteína 9 Associada à CRISPR/metabolismo , Adulto , Separação Celular , Feminino , Humanos , Imunidade Humoral , Masculino , Linfócitos T/imunologia
11.
Nat Methods ; 15(12): 1045-1047, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30504872

RESUMO

Scarless genome editing in human pluripotent stem cells (hPSCs) represents a goal for both precise research applications and clinical translation of hPSC-derived therapies. Here we established a versatile and efficient method that combines CRISPR-Cas9-mediated homologous recombination with positive-negative selection of edited clones to generate scarless genetic changes in hPSCs.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias/metabolismo , Edição de Genes , Genoma Humano , Recombinação Homóloga , Células-Tronco Pluripotentes/metabolismo , RNA Interferente Pequeno/genética , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/citologia
12.
J Immunol ; 201(11): 3320-3328, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373854

RESUMO

Age-related thymic involution is characterized by a decrease in thymic epithelial cell (TEC) number and function parallel to a disruption in their spatial organization, resulting in defective thymocyte development and proliferation as well as peripheral T cell dysfunction. Deficiency of Klotho, an antiaging gene and modifier of fibroblast growth factor signaling, causes premature aging. To investigate the role of Klotho in accelerated age-dependent thymic involution, we conducted a comprehensive analysis of thymopoiesis and peripheral T cell homeostasis using Klotho-deficient (Kl/Kl) mice. At 8 wk of age, Kl/Kl mice displayed a severe reduction in the number of thymocytes (10-100-fold reduction), especially CD4 and CD8 double-positive cells, and a reduction of both cortical and medullary TECs. To address a cell-autonomous role for Klotho in TEC biology, we implanted neonatal thymi from Klotho-deficient and -sufficient mice into athymic hosts. Kl/Kl thymus grafts supported thymopoiesis equivalently to Klotho-sufficient thymus transplants, indicating that Klotho is not intrinsically essential for TEC support of thymopoiesis. Moreover, lethally irradiated hosts given Kl/Kl or wild-type bone marrow had normal thymocyte development and comparably reconstituted T cells, indicating that Klotho is not inherently essential for peripheral T cell reconstitution. Because Kl/Kl mice have higher levels of serum phosphorus, calcium, and vitamin D, we evaluated thymus function in Kl/Kl mice fed with a vitamin D-deprived diet. We observed that a vitamin D-deprived diet abrogated thymic involution and T cell lymphopenia in 8-wk-old Kl/Kl mice. Taken together, our data suggest that Klotho deficiency causes thymic involution via systemic effects that include high active vitamin D levels.


Assuntos
Senilidade Prematura/genética , Envelhecimento/fisiologia , Células Epiteliais/fisiologia , Glucuronidase/metabolismo , Linfócitos T/fisiologia , Timócitos/fisiologia , Timo/fisiologia , Transferência Adotiva , Animais , Células Cultivadas , Dietoterapia , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/genética , Proteínas Klotho , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Timo/transplante , Transplante , Vitamina D/metabolismo
13.
Front Microbiol ; 8: 2666, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379474

RESUMO

Epstein-Barr virus (EBV) is the etiological agent of acute infectious mononucleosis (IM). Since acute IM is a self-resolving disease with most patients regaining health in 1-3 weeks there have been few studies examining molecular signatures in early acute stages of the disease. MicroRNAs (miRNAs) have been shown, however, to influence immune cell function and consequently the generation of antibody responses in IM. In this study, we performed a comprehensive analysis of differentially expressed miRNAs in early stage uncomplicated acute IM. miRNAs were profiled from patient peripheral blood obtained at the time of IM diagnosis and at subsequent time points, and pathway analysis performed to identify important immune and cell signaling pathways. We identified 215 differentially regulated miRNAs at the most acute stage of infection when the patients initially sought medical help. The number of differentially expressed miRNAs decreased to 148 and 68 at 1 and 2 months post-primary infection, with no significantly changed miRNAs identified at 7 months post-infection. Interferon signaling, T and B cell signaling and antigen presentation were the top pathways influenced by the miRNAs associated with IM. Thus, a dynamic and regulated expression profile of miRNA accompanies the early acute immune response, and resolution of infection, in IM.

14.
Nature ; 539(7629): 384-389, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27820943

RESUMO

The ß-haemoglobinopathies, such as sickle cell disease and ß-thalassaemia, are caused by mutations in the ß-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure ß-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult ß-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for ß-haemoglobinopathies.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Marcação de Genes , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Alelos , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Animais , Antígenos CD34/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Diferenciação Celular , Linhagem da Célula , Separação Celular , Dependovirus/genética , Eritrócitos , Feminino , Citometria de Fluxo , Genes Reporter , Recombinação Homóloga , Humanos , Imãs , Camundongos Endogâmicos NOD , Camundongos SCID , Microesferas , Mutação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Talassemia beta/genética , Talassemia beta/terapia
15.
Mol Genet Metab ; 119(1-2): 28-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27650066

RESUMO

Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Anemia Aplástica/genética , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas/enzimologia , Aldeídos/metabolismo , Anemia Aplástica/enzimologia , Anemia Aplástica/patologia , Anemia de Fanconi/enzimologia , Anemia de Fanconi/patologia , Rubor/genética , Rubor/patologia , Humanos , Polimorfismo de Nucleotídeo Único , Especificidade por Substrato
16.
Biol Blood Marrow Transplant ; 21(3): 440-4, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25459642

RESUMO

Blood and marrow transplantation (BMT) is a standard curative therapy for patients with nonmalignant genetic diseases. Myeloablative conditioning has been associated with significant regimen-related toxicity (RRT), whereas reduced-intensity conditioning regimens have been associated with graft failure. In this prospective pilot trial conducted at 2 centers between 2006 and 2013, we report the outcome of 22 patients with nonmalignant genetic diseases who were conditioned with a novel reduced-toxicity regimen: i.v. busulfan (16 mg/kg), alemtuzumab (52 mg/m(2)), fludarabine (140 mg/m(2)), and cyclophosphamide (105 mg/kg). The median age of the study population was 3.5 years (range, 5 months to 26 years). No cases of sinusoidal obstruction syndrome, severe or chronic graft-versus-host disease (GVHD), or primary graft failure were reported. Median time to neutrophil engraftment (>500 cells/µL) and platelet engraftment (>20K cells/µL) were 19 (range, 12 to 50) and 23.5 (range, 14 to 134) days, respectively. The median length of follow-up was 3 years (range, .2 to 6.3). The overall survival rates were 95% at 100 days (95% confidence interval, .72 to .99) and 90% at 6 years (95% confidence interval, .68 to .98). RRT and chronic GVHD are significant barriers to BMT for patients with nonmalignant genetic diseases. This alemtuzumab-based reduced-toxicity regimen appears to be promising with durable engraftment, effective cure of clinical disease, low rates of RRT, and no observed chronic GVHD.


Assuntos
Transplante de Medula Óssea , Doenças Genéticas Inatas/mortalidade , Doenças Genéticas Inatas/terapia , Sobrevivência de Enxerto , Agonistas Mieloablativos/administração & dosagem , Condicionamento Pré-Transplante , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Seguimentos , Rejeição de Enxerto/mortalidade , Rejeição de Enxerto/prevenção & controle , Humanos , Lactente , Masculino , Projetos Piloto , Taxa de Sobrevida
17.
Biol Blood Marrow Transplant ; 21(2): 326-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445024

RESUMO

The purpose of this study is to evaluate the survival of pediatric patients undergoing autologous bone marrow transplantation (auBMT) for relapsed or refractory Hodgkin lymphoma (rrHL) and to identify factors that might contribute to their outcome. We reviewed the records and clinical course of 89 consecutive rrHL patients ≤ 21 years old who underwent auBMT at Stanford Hospitals and Clinics and the Lucile Packard Children's Hospital, Stanford between 1989 and 2012. We investigated, by multiple analyses, patient, disease, and treatment characteristics associated with outcome. Endpoints were 5-year overall and event-free survival. Our findings include that cyclophosphamide, carmustine, and etoposide (CBV) as a conditioning regimen for auBMT is effective for most patients ≤ 21 years old with rrHL (5-year overall survival, 71%). Transplantation after the year 2001 was associated with significantly improved overall survival compared with our earlier experience (80% compared with 65%). Patients with multiply relapsed disease or with disease not responsive to initial therapy fared less well compared with those with response to initial therapy or after first relapse. Administration of post-auBMT consolidative radiotherapy (cRT) also appears to contribute to improved survival. We are able to conclude that high-dose chemotherapy with CBV followed by auBMT is effective for the treatment of rrHL in children and adolescents. Survival for patients who undergo auBMT for rrHL has improved significantly. This improvement may be because of patient selection and improvements in utilization of radiotherapy rather than improvements in chemotherapy. Further investigation is needed to describe the role of auBMT across the entire spectrum of patients with rrHL and to identify the most appropriate preparative regimen with or without cRT therapy in the treatment of rrHL in young patients.


Assuntos
Raios gama/uso terapêutico , Doença de Hodgkin/terapia , Agonistas Mieloablativos/uso terapêutico , Recidiva Local de Neoplasia/terapia , Condicionamento Pré-Transplante , Transplante Autólogo , Adolescente , Adulto , Transplante de Medula Óssea , Carmustina/uso terapêutico , Criança , Ciclofosfamida/uso terapêutico , Etoposídeo/uso terapêutico , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença de Hodgkin/imunologia , Doença de Hodgkin/mortalidade , Doença de Hodgkin/patologia , Humanos , Masculino , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Recidiva , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento
18.
Biol Blood Marrow Transplant ; 20(4): 581-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24370862

RESUMO

Allogeneic hematopoietic stem cell transplantation for patients with a hemoglobinopathy can be curative but is limited by donor availability. Although positive results are frequently observed in those with an HLA-matched sibling donor, use of unrelated donors has been complicated by poor engraftment, excessive regimen-related toxicity, and graft-versus-host disease (GVHD). As a potential strategy to address these obstacles, a pilot study was designed that incorporated both a reduced-intensity conditioning and mesenchymal stromal cells (MSCs). Six patients were enrolled, including 4 with high-risk sickle cell disease (SCD) and 2 with transfusion-dependent thalassemia major. Conditioning consisted of fludarabine (150 mg/m(2)), melphalan (140 mg/m(2)), and alemtuzumab (60 mg for patients weighing > 30 kg and .9 mg/kg for patients weighing <30 kg). Two patients received HLA 7/8 allele matched bone marrow and 4 received 4-5/6 HLA matched umbilical cord blood as the source of HSCs. MSCs were of bone marrow origin and derived from a parent in 1 patient and from an unrelated third-party donor in the remaining 5 patients. GVHD prophylaxis consisted of cyclosporine A and mycophenolate mofetil. One patient had neutropenic graft failure, 2 had autologous hematopoietic recovery, and 3 had hematopoietic recovery with complete chimerism. The 2 SCD patients with autologous hematopoietic recovery are alive. The remaining 4 died either from opportunistic infection, GVHD, or intracranial hemorrhage. Although no infusion-related toxicity was seen, the cotransplantation of MSCs was not sufficient for reliable engraftment in patients with advanced hemoglobinopathy. Although poor engraftment has been observed in nearly all such trials to date in this patient population, there was no evidence to suggest that MSCs had any positive impact on engraftment. Because of the lack of improved engraftment and unacceptably high transplant-related mortality, the study was prematurely terminated. Further investigations into understanding the mechanisms of graft resistance and development of strategies to overcome this barrier are needed to move this field forward.


Assuntos
Anemia Falciforme/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Mesenquimais , Agonistas Mieloablativos/uso terapêutico , Condicionamento Pré-Transplante/métodos , Talassemia beta/terapia , Adolescente , Alemtuzumab , Anemia Falciforme/imunologia , Anemia Falciforme/mortalidade , Anemia Falciforme/patologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Criança , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Antígenos HLA/imunologia , Teste de Histocompatibilidade , Humanos , Masculino , Melfalan/uso terapêutico , Análise de Sobrevida , Transplante Homólogo , Falha de Tratamento , Doadores não Relacionados , Vidarabina/análogos & derivados , Vidarabina/uso terapêutico , Talassemia beta/imunologia , Talassemia beta/mortalidade , Talassemia beta/patologia
19.
Clin Immunol ; 149(1): 146-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23994768

RESUMO

Multi-center evaluations of pediatric patients with juvenile systemic sclerosis (jSSc) have suggested that the pathogenesis of jSSc may differ from that of systemic sclerosis (SSc) in adult patients. Therefore, we undertook to identify abnormalities in the T lymphocytes of jSSc patients and to determine if they differed from the abnormalities reported in the T lymphocytes of adult SSc patients. We identified decreases in the frequency of resting regulatory T lymphocytes and an increased frequency of CD45RA expressing effector memory (EMRA) CD4 T lymphocytes, which were characterized by an increased frequency of CCR7 protein expressing cells. Neither the increases in the EMRA subpopulation nor the increased CCR7 protein expression have been reported in adult SSc patients. The decrease in resting regulatory T lymphocytes in jSSc patients may permit the expansion of the disease initiating CD4 T lymphocytes present in the CCR7 expressing EMRA CD4 T lymphocyte subpopulation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Escleroderma Sistêmico/imunologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Criança , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CCR7/genética , Escleroderma Sistêmico/genética , Adulto Jovem
20.
J Exp Med ; 210(6): 1087-97, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23669396

RESUMO

Thymic involution during aging is a major cause of decreased production of T cells and reduced immunity. Here we show that inactivation of Rb family genes in young mice prevents thymic involution and results in an enlarged thymus competent for increased production of naive T cells. This phenotype originates from the expansion of functional thymic epithelial cells (TECs). In RB family mutant TECs, increased activity of E2F transcription factors drives increased expression of Foxn1, a central regulator of the thymic epithelium. Increased Foxn1 expression is required for the thymic expansion observed in Rb family mutant mice. Thus, the RB family promotes thymic involution and controls T cell production via a bone marrow-independent mechanism, identifying a novel pathway to target to increase thymic function in patients.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inativação Gênica , Genes do Retinoblastoma , Linfócitos T/fisiologia , Timo/fisiologia , Animais , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Epitélio/metabolismo , Epitélio/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linfócitos T/metabolismo , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA