Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(7): 3629-3637, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36745752

RESUMO

Multidimensional liquid chromatography (mD-LC) is becoming a powerful tool for complete characterization of individual peaks and protein variants through separation methods such as nondenaturing ion exchange (IEC) or size-exclusion chromatography coupled to reversed-phase (RP) chromatography. The flexibility of commercially available and customized mD-LC systems is still limited in terms of enzymatic peak processing between chromatographic dimensions. In this regard, only a few column-immobilized proteases are available for detailed peak characterization by mD-LC coupled to mass spectrometry (mD-LC-MS). Here, we present a purpose-built and automated multiple heart-cutting mD-LC design with a novel analytical workflow involving in-loop enzymatic heart-cut digestion between the first-dimensional column and transfer to the second dimension before MS or MS/MS analyses. The setup facilitates the spike-in of any enzyme to multiple heart-cuts for multilevel analysis, for example, for peptide mapping, fragment generation, or deglycosylation, to reduce heterogeneity and provide maximum flexibility in terms of incubation time for optimal peak characterization. We demonstrate the application of IEC coupled to RP-LC-MS and automated in-loop deglycosylation and on-column reduction of an IgG antibody combined with upper hinge region cleavage for Fab generation. We further employ mD-LC-MS and mD-LC-MS/MS to assess post-translational modifications of a bispecific antibody and to support molecule selection by evaluating the best downstream purification strategy. The novel design and automated workflow of the mD-LC system described here offers enhanced flexibility for in-solution processing and real-time monitoring of multiple heart-cuts enabling streamlined characterization of unknown biotherapeutic charge and size variants.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Fluxo de Trabalho , Cromatografia de Fase Reversa/métodos , Cromatografia em Gel
2.
Talanta ; 234: 122628, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364437

RESUMO

An international study was conducted to evaluate the performance and reliability of an online multi-dimensional (mD)-LC-MS/MS approach for the characterization of antibody charge variants. The characterization of antibody charge variants is traditionally performed by time-consuming, offline isolation of charge variant fractions by ion exchange chromatography (IEC) that are subsequently subjected individually to LC-MS/MS peptide mapping. This newly developed mD-LC-MS/MS approach enables automated and rapid characterization of charge variants using much lower sample requirements. This online workflow includes sample reduction, digestion, peptide mapping, and subsequent mass spectrometric analysis within a single, fully-automated procedure. The benefits of using online mD-LC-MS/MS for variant characterization include fewer handling steps, a more than 10-fold reduction in required sample amount, reduced sample hold time as well as a shortening of the overall turnaround time from weeks to few days compared to standard offline procedures. In this site-to-site comparison study, we evaluated the online peptide mapping data collected from charge variants of trastuzumab (Herceptin®) across three international laboratories. The purpose of this study was to compare the overall performance of the online mD-LC-MS/MS approach for antibody charge variant characterization, with all participating sites employing different mD-LC-MS/MS setups (e.g., instrument vendors, modules, columns, CDS software). The high sequence coverage (95%-97%) obtained in each laboratory, enabled a reproducible generation of tryptic peptides and the comparison of values of the charge variants. Results obtained at all three participating sites were in good agreement, highlighting the reliability and performance of this approach, and correspond with data gained by the standard offline procedure. Overall, our results underscore of the benefit mD-LC-MS/MS technology for therapeutic antibody characterization, confirming its potential to become an important tool in the toolbox of protein characterization scientists.


Assuntos
Laboratórios , Espectrometria de Massas em Tandem , Anticorpos Monoclonais , Cromatografia Líquida , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA