RESUMO
Dysregulated DNA replication is a cause and a consequence of aneuploidy in cancer, yet the interplay between copy number alterations (CNAs), replication timing (RT) and cell cycle dynamics remain understudied in aneuploid tumors. We developed a probabilistic method, PERT, for simultaneous inference of cell-specific replication and copy number states from single-cell whole genome sequencing (scWGS) data. We used PERT to investigate clone-specific RT and proliferation dynamics in >50,000 cells obtained from aneuploid and clonally heterogeneous cell lines, xenografts and primary cancers. We observed bidirectional relationships between RT and CNAs, with CNAs affecting X-inactivation producing the largest RT shifts. Additionally, we found that clone-specific S-phase enrichment positively correlated with ground-truth proliferation rates in genomically stable but not unstable cells. Together, these results demonstrate robust computational identification of S-phase cells from scWGS data, and highlight the importance of RT and cell cycle properties in studying the genomic evolution of aneuploid tumors.
Assuntos
Aneuploidia , Proliferação de Células , Variações do Número de Cópias de DNA , Período de Replicação do DNA , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Proliferação de Células/genética , Neoplasias/genética , Neoplasias/patologia , Fase S/genética , Animais , Linhagem Celular Tumoral , Sequenciamento Completo do Genoma , Ciclo Celular/genética , Análise de Sequência de DNA/métodos , Replicação do DNA/genética , CamundongosRESUMO
Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.
RESUMO
The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.
Assuntos
Núcleo Celular , Variações do Número de Cópias de DNA , DNA Mitocondrial , Genoma Mitocondrial , Neoplasias , Análise de Célula Única , Humanos , DNA Mitocondrial/genética , Análise de Célula Única/métodos , Variações do Número de Cópias de DNA/genética , Núcleo Celular/genética , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Animais , Mitocôndrias/genética , Sequenciamento Completo do Genoma/métodos , Camundongos , Heteroplasmia/genéticaRESUMO
Subclonal copy number alterations are a prevalent feature in tumors with high chromosomal instability and result in heterogeneous cancer cell populations with distinct phenotypes. However, the extent to which subclonal copy number alterations contribute to clone-specific phenotypes remains poorly understood. We develop TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population. TreeAlign accurately encodes dosage effects from subclonal copy number alterations, the impact of allelic imbalance on allele-specific transcription, and obviates the need to define genotypic clones from a phylogeny a priori, leading to highly granular definitions of clones with distinct expression programs. These improvements enable clone-clone gene expression comparisons with higher resolution and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Variações do Número de Cópias de DNA/genética , Alelos , Neoplasias/genética , Neoplasias/patologia , Genótipo , FenótipoRESUMO
Dysregulated DNA replication is both a cause and a consequence of aneuploidy, yet the dynamics of DNA replication in aneuploid cell populations remains understudied. We developed a new method, PERT, for inferring cell-specific DNA replication states from single-cell whole genome sequencing, and investigated clone-specific DNA replication dynamics in >50,000 cells obtained from a collection of aneuploid and clonally heterogeneous cell lines, xenografts and primary cancer tissues. Clone replication timing (RT) profiles correlated with future copy number changes in serially passaged cell lines. Cell type was the strongest determinant of RT heterogeneity, while whole genome doubling and mutational process were associated with accumulation of late S-phase cells and weaker RT associations. Copy number changes affecting chromosome X had striking impact on RT, with loss of the inactive X allele shifting replication earlier, and loss of inactive Xq resulting in reactivation of Xp. Finally, analysis of time series xenografts illustrate how cell cycle distributions approximate clone proliferation, recapitulating expected relationships between proliferation and fitness in treatment-naive and chemotherapeutic contexts.
RESUMO
Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a prevalent feature which often result in heterogeneous cancer cell populations with distinct phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific phenotypes remains poorly understood, in part due to the lack of methods to quantify how CNAs influence gene expression at a subclone level. We developed TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population and explicitly models gene dosage effects from subclonal alterations. We show through quantitative benchmarking data and application to human cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-specific transcription, and obviates the need to arbitrarily define genotypic clones from a phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of clones with distinct copy-number driven expression programs with increased resolution and accuracy over competing methods. The resulting improvement in assignment of transcriptional phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit inference of genes that are mechanistically altered through CNAs, and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
RESUMO
How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.
Assuntos
Genômica , Mutação , Neoplasias Ovarianas , Análise de Célula Única , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Filogenia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
The γ-chain receptor dimerizes with complexes of the cytokines interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 and their corresponding "private" receptors. These cytokines have existing uses and future potential as immune therapies because of their ability to regulate the abundance and function of specific immune cell populations. Here, we build a binding reaction model for the ligand-receptor interactions of common γ-chain cytokines, which includes receptor trafficking dynamics, enabling quantitative predictions of cell-type-specific response to natural and engineered cytokines. We then show that tensor factorization is a powerful tool to visualize changes in the input-output behavior of the family across time, cell types, ligands, and concentrations. These results present a more accurate model of ligand response validated across a panel of immune cell types as well as a general approach for generating interpretable guidelines for manipulation of cell-type-specific targeting of engineered ligands.