Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188518, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545296

RESUMO

Triple Negative Breast Cancer (TNBC) is an aggressive tumour with patients survival rarely exceeding five years. TNBC tumours are larger in size, more chemoresistant, highly proliferative and usually more enriched in stem and immune cells comparing to other breast cancer subtypes. Functionally, these changes are dependent on a high-quality mitochondrial pool. Mitochondrial health is constantly assessed and appropriately improved by mitochondrial dynamics (cycles of mitochondrial fusion and division). Recent advances in understanding of mitochondrial dynamics in TNBC has demonstrated its critical importance in tumour growth and metastasis. This review explores current knowledge of mitochondrial dynamics in TNBC and discusses targeting this pathway clinically to improve outcomes for patients.


Assuntos
Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Dinâmica Mitocondrial , Análise de Sobrevida
2.
Oncogenesis ; 6(10): e388, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28991260

RESUMO

Triple negative breast cancer (TNBC) is an aggressive subtype with relatively poor clinical outcomes and limited treatment options. Chemotherapy, while killing cancer cells, can result in the generation of highly chemoresistant therapeutic induced senescent (TIS) cells that potentially form stem cell niches resulting in metastases. Intriguingly, senescent cells release significantly more extracellular vesicles (EVs) than non-senescent cells. Our aim was to profile EVs harvested from TIS TNBC cells compared with control cells to identify a potential mechanism by which TIS TNBC cells maintain survival in the face of chemotherapy. TIS was induced and confirmed in Cal51 TNBC cells using the chemotherapeutic paclitaxel (PTX) (Taxol). Mass spectrometry (MS) analysis of EVs harvested from TIS compared with control Cal51 cells was performed using Ingenuity Pathway Analysis and InnateDB programs. We demonstrate that TIS Cal51 cells treated with 75 nM PTX for 7 days became senescent (senescence-associated ß-galactosidase (SA-ß-Gal) positive, Ki67-negative, increased p21 and p16, G2/M cell cycle arrest) and released significantly more EVs (P=0.0002) and exosomes (P=0.0007) than non-senescent control cells. Moreover, TIS cells displayed an increased expression of the multidrug resistance protein 1/p-glycoprotein. MS analysis demonstrated that EVs derived from senescent Cal51 cells contained 142 proteins with a significant increased fold change compared with control EVs. Key proteins included ATPases, annexins, tubulins, integrins, Rabs and insoluble senescence-associated secretory phenotype (SASP) factors. A fluorescent analogue of PTX (Flutax-2) allowed appreciation of the removal of chemotherapy in EVs from senescent cells. Treatment of TIS cells with the exosome biogenesis inhibitor GW4869 resulted in reduced SA-ß-Gal staining (P=0.04). In summary, this study demonstrates that TIS cells release significantly more EVs compared with control cells, containing chemotherapy and key proteins involved in cell proliferation, ATP depletion, apoptosis and the SASP. These findings may partially explain why cancer senescent cells remain viable despite chemotherapeutic challenge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA