Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(2): 1205-1212, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29314849

RESUMO

Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids. However, scalable production beyond exfoliation from bulk single crystals remained a major challenge. Single-orientation monolayer h-BN nanomesh is grown on 4 in. wafer single crystalline rhodium films and transferred on arbitrary substrates such as SiO2, germanium, or transmission electron microscopy grids. The transfer process involves application of tetraoctylammonium bromide before electrochemical hydrogen delamination. The material performance is demonstrated with two applications. First, protective sealing of h-BN is shown by preserving germanium from oxidation in air at high temperatures. Second, the membrane functionality of the single h-BN layer is demonstrated in aqueous solutions. Here, we employ a growth substrate intrinsic preparation scheme to create regular 2 nm holes that serve as ion channels in liquids.

2.
ACS Nano ; 9(6): 5908-12, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25964990

RESUMO

Growth, electronic properties, and magnetic properties of an Fe monolayer (ML) on an Ir/YSZ/Si(111) multilayer system have been studied using spin-polarized scanning tunneling microscopy. Our experiments reveal a magnetic nano-skyrmion lattice, which is fully equivalent to the magnetic ground state that has previously been observed for the Fe ML on Ir(111) bulk single crystals. In addition, the experiments indicate that the interface-stabilized skyrmion lattice is robust against local atomic lattice distortions induced by multilayer preparation.

3.
Langmuir ; 30(21): 6114-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24807530

RESUMO

Epitaxial graphene is expected to be the only way to obtain large-area sheets of this two-dimensional material for applications on an industrial scale. So far, there are different recipes for epitaxial growth of graphene, using either intrinsic carbon, such as the selective desorption of silicon from a SiC surface, or extrinsic carbon, as via the chemical vapor deposition (CVD) of simple hydrocarbons on transition metal surfaces. In addition, even liquid precursor deposition (LPD) provides well-ordered graphene monolayers. It will be shown that graphene formation on transition metal surfaces by LPD synthesis is a very robust mechanism that even works if carbon is provided in a quite undefined way, namely by using a human fingerprint as a liquid precursor. Graphene growth from fingerprints provides well-ordered monolayers with the same quality as LPD grown graphene using ultrapure synthetic single precursors. The reliability of the self-assembly process of graphene growth on transition metals by LPD therefore offers a simple and extremely robust synthesis route for epitaxial graphene and may give access to production pathways for substrates for which the CVD method fails.

4.
Langmuir ; 29(14): 4543-50, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23480301

RESUMO

The wear resistance of a Rh(111) surface can be strongly increased by interstitial alloying with boron atoms via chemical vapor deposition of trimethylborate [B(OCH3)3] at moderate temperatures of about 800 K. The fragmentation of the precursor results in single boron atoms that are incorporated in the fcc lattice of the substrate, as displayed by X-ray photoelectron diffraction. The penetration depth of the boron atoms is in the range of at least 100 nm with the boron distribution displaying a nearly homogeneous depth profile, as examined by combined X-ray photoelectron spectroscopy and Ar ion etching experiments. Compared to the bare Rh(111) surface, the wear resistance of the boron-doped Rh surface is increased to about 400%, as probed by the scratching experiments with atomic force microscopy. The presented synthesis route provides an easy method for case hardening of micro- or nanoelectromechanical devices (MEMS and NEMS, respectively) at moderate temperatures.

5.
J Phys Condens Matter ; 24(31): 314204, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22820467

RESUMO

The epitaxial growth of graphene on transition metal surfaces by ex situ deposition of liquid precursors (LPD, liquid phase deposition) is compared to the standard method of chemical vapor deposition (CVD). The performance of LPD strongly depends on the particular transition metal surface. For Pt(111), Ir(111) and Rh(111), the formation of a graphene monolayer is hardly affected by the way the precursor is provided. In the case of Ni(111), the growth of graphene strongly depends on the applied synthesis method. For CVD of propene on Ni(111), a 1 × 1 structure as expected from the vanishing lattice mismatch is observed. However, in spite of the nearly perfect lattice match, a multi-domain structure with 1 × 1 and two additional rotated domains is obtained when an oxygen-containing precursor (acetone) is provided ex situ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA