Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137100

RESUMO

Focused attention meditation (FAM) training has been shown to improve attention, but the neural basis of FAM on attention has not been thoroughly understood. Here, we aim to investigate the neural effect of a 2-month FAM training on novice meditators in a visual oddball task (a frequently adopted task to evaluate attention), evaluated with both ASL and BOLD fMRI. Using ASL, activation was increased in the middle cingulate (part of the salience network, SN) and temporoparietal (part of the frontoparietal network, FPN) regions; the FAM practice time was negatively associated with the longitudinal changes in activation in the medial prefrontal (part of the default mode network, DMN) and middle frontal (part of the FPN) regions. Using BOLD, the FAM practice time was positively associated with the longitudinal changes of activation in the inferior parietal (part of the dorsal attention network, DAN), dorsolateral prefrontal (part of the FPN), and precentral (part of the DAN) regions. The effect sizes for the activation changes and their association with practice time using ASL are significantly larger than those using BOLD. Our study suggests that FAM training may improve attention via modulation of the DMN, DAN, SN, and FPN, and ASL may be a sensitive tool to study the FAM effect on attention.

2.
Brain Sci ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36831771

RESUMO

Neural markers of attention, including those frequently linked to the event-related potential P3 (P300) or P3b component, vary widely within and across participants. Understanding the neural mechanisms of attention that contribute to the P3 is crucial for better understanding attention-related brain disorders. All ten participants were scanned twice with a resting-state PCASL perfusion MRI and an ERP with a visual oddball task to measure brain resting-state functional connectivity (rsFC) and P3 parameters (P3 amplitudes and P3 latencies). Global rsFC (average rsFC across the entire brain) was associated with both P3 amplitudes (r = 0.57, p = 0.011) and P3 onset latencies (r = -0.56, p = 0.012). The observed P3 parameters were correlated with predicted P3 amplitude from the global rsFC (amplitude: r = +0.48, p = 0.037; latency: r = +0.40, p = 0.088) but not correlated with the rsFC over the most significant individual edge. P3 onset latency was primarily related to long-range connections between the prefrontal and parietal/limbic regions, while P3 amplitudes were related to connections between prefrontal and parietal/occipital, between sensorimotor and subcortical, and between limbic/subcortical and parietal/occipital regions. These results demonstrated the power of resting-state PCASL and P3 correlation with brain global functional connectivity.

3.
Brain Sci ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34679328

RESUMO

We aimed to assess whether dynamic arterial spin labeling (dASL), a novel quantitative MRI technique with minimal contamination of subject motion and physiological noises, could detect the longitudinal effect of focused attention meditation (FAM) on resting-state functional connectivity (rsFC). A total of 10 novice meditators who recorded their FAM practice time were scanned at baseline and at the 2-month follow-up. Two-month meditation practice caused significantly increased rsFC between the left medial temporal (LMT) seed and precuneus area and between the right frontal eye (RFE) seed and medial prefrontal cortex. Meditation practice time was found to be positively associated with longitudinal changes of rsFC between the default mode network (DMN) and dorsal attention network (DAN), between DMN and insula, and between DAN and the frontoparietal control network (FPN) but negatively associated with changes of rsFC between DMN and FPN, and between DAN and visual regions. These findings demonstrate the capability of dASL in identifying the FAM-induced rsFC changes and suggest that the practice of FAM can strengthen the efficient control of FPN on fast switching between DMN and DAN and enhance the utilization of attentional resources with reduced focus on visual processing.

4.
Sci Rep ; 11(1): 11361, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059702

RESUMO

Changes in brain resting-state functional connectivity (rsFC) were investigated using a longitudinal design by following a 2-month focused attention meditation (FAM) practice and analyzing their association with FAM practice time. Ten novice meditators were recruited from a university meditation course. Participants were scanned with a resting-state fMRI sequence with multi-echo EPI acquisition at baseline and at the 2-month follow-up. Total FAM practice time was calculated from the daily log of the participants. We observed significantly increased rsFC between the posterior cingulate cortex (PCC) and dorsal attention network (DAN), the right middle temporal (RMT) region and default mode network (DMN), the left and right superior parietal lobules (LSPL/RSPL) and DMN, and the LSPL/RSPL and DAN. Furthermore, the rsFC between the LSPL and medial prefrontal cortex was significantly associated with the FAM practice time. These results demonstrate increased connectivity within the DAN, between the DMN and DAN, and between the DMN and visual cortex. These findings demonstrate that FAM can enhance the brain connection among and within brain networks, especially DMN and DAN, indicating potential effect of FAM on fast switching between mind wandering and focused attention and maintaining attention once in the attentive state.


Assuntos
Encéfalo/fisiologia , Conectoma , Meditação , Descanso , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA