Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Cells ; 13(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39404386

RESUMO

Most patients with metastatic prostate cancer eventually develop resistance to primary androgen deprivation therapy. To identify predictive biomarker for Abiraterone acetate/prednisone resistance, we screened alternative splice variants between responders and non-responders from the PROMOTE clinical study and pinned down the most significant variant, CENPK-delta8. Through preclinical patient-derived mouse xenograft (PDX) and 3D organoids obtained from responders and non-responders, as well as in vitro models, aberrant CENPK-delta8 expression was determined to link to drug resistance via enhanced migration and proliferation. The FLNA and FLOT1 were observed to specifically bind to CENK-delta8 rather than wild-type CENPK, underscoring the role of CENPK-delta8 in cytoskeleton organization and cell migration. Our study, leveraging data from the PROMOTE study, TCGA, and TCGA SpliceReq databases, highlights the important function of alternative splice variants in drug response and their potential to be prognostic biomarkers for improving individual therapeutic outcomes in precision medicine.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Camundongos , Processamento Alternativo/genética , Processamento Alternativo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Metástase Neoplásica , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Linhagem Celular Tumoral , Androstenos/farmacologia , Androstenos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Breast Cancer Res ; 26(1): 111, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965614

RESUMO

BACKGROUND: Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS: We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS: We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS: We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.


Assuntos
Neoplasias da Mama , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptores Androgênicos , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Nitrilas/uso terapêutico , Genótipo , Farmacogenética/métodos , Variantes Farmacogenômicos , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Benzamidas
3.
Brain Behav Immun ; 120: 304-314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852760

RESUMO

Acamprosate is a Food and Drug Administration (FDA) approved medication for the treatment of alcohol use disorder (AUD). However, only a subset of patients achieves optimal treatment outcomes. Currently, no biological measures are utilized to predict response to acamprosate treatment. We applied our established pharmaco-omics informed genomics strategy to identify potential biomarkers associated with acamprosate treatment response. Specifically, our previous open-label acamprosate clinical trial recruited 442 patients with AUD who were treated with acamprosate for three months. We first performed proteomics using baseline plasma samples to identify potential biomarkers associated with acamprosate treatment outcomes. Next, we applied our established "proteomics-informed genome-wide association study (GWAS)" research strategy, and identified 12 proteins, including interleukin-17 receptor B (IL17RB), associated with acamprosate treatment response.​ A GWAS for IL17RB concentrations identified several genome-wide significant signals. Specifically, the top hit single nucleotide polymorphism (SNP) rs6801605 with a minor allele frequency of 38% in the European American population mapped 4 kilobase (Kb) upstream of IL17RB, and intron 1 of the choline dehydrogenase (CHDH) gene on chromosome 3 (p: 4.8E-20). The variant genotype (AA) for the SNP rs6801605 was associated with lower IL17RB protein expression. In addition, we identified a series of genetic variants in IL17RB that were associated with acamprosate treatment outcomes. Furthermore, the variantgenotypes for all of those IL17RB SNPs were protective for alcohol relapse. Finally, we demonstrated that the basal level of mRNA expression of IL17RB was inversely correlated with those of nuclear factor-κB (NF-κB) subunits, and a significantly higher expression of NF-κB subunits was observed in AUD patients who relapsed to alcohol use. In summary, this study illustrates that IL17RB genetic variants might contribute to acamprosate treatment outcomes. This series of studies represents an important step toward generating functional hypotheses that could be tested to gain insight into mechanisms underlying acamprosate treatment response phenotypes. (The ClinicalTrials.gov Identifier: NCT00662571).


Assuntos
Acamprosato , Dissuasores de Álcool , Alcoolismo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Proteômica , Receptores de Interleucina-17 , Humanos , Acamprosato/uso terapêutico , Polimorfismo de Nucleotídeo Único/genética , Alcoolismo/genética , Alcoolismo/tratamento farmacológico , Masculino , Feminino , Proteômica/métodos , Dissuasores de Álcool/uso terapêutico , Pessoa de Meia-Idade , Adulto , Receptores de Interleucina-17/genética , Resultado do Tratamento , Genômica/métodos , Biomarcadores/sangue , Taurina/análogos & derivados , Taurina/uso terapêutico
4.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38585820

RESUMO

The OmicsFootPrint framework addresses the need for advanced multi-omics data analysis methodologies by transforming data into intuitive two-dimensional circular images and facilitating the interpretation of complex diseases. Utilizing Deep Neural Networks and incorporating the SHapley Additive exPlanations (SHAP) algorithm, the framework enhances model interpretability. Tested with The Cancer Genome Atlas (TCGA) data, OmicsFootPrint effectively classified lung and breast cancer subtypes, achieving high Area Under Curve (AUC) scores - 0.98±0.02 for lung cancer subtype differentiation, 0.83±0.07 for breast cancer PAM50 subtypes, and successfully distinguishe between invasive lobular and ductal carcinomas in breast cancer, showcasing its robustness. It also demonstrated notable performance in predicting drug responses in cancer cell lines, with a median AUC of 0.74, surpassing existing algorithms. Furthermore, its effectiveness persists even with reduced training sample sizes. OmicsFootPrint marks an enhancement in multi-omics research, offering a novel, efficient, and interpretable approach that contributes to a deeper understanding of disease mechanisms.

5.
J Womens Health (Larchmt) ; 32(11): 1229-1240, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37856151

RESUMO

Background: Antidepressants are among the most prescribed medications in the United States. The aim of this study was to explore the prevalence of antidepressant prescriptions and investigate sex differences and age-sex interactions in adults enrolled in the Right Drug, Right Dose, Right Time: Using Genomic Data to Individualize Treatment (RIGHT) study. Materials and Methods: We conducted a retrospective analysis of the RIGHT study. Using electronic prescriptions, we assessed 12-month prevalence of antidepressant treatment. Sex differences and age-sex interactions were evaluated using multivariable logistic regression and flexible recursive smoothing splines. Results: The sample consisted of 11,087 participants (60% women). Antidepressant prescription prevalence was 22.24% (27.96% women, 13.58% men). After adjusting for age and enrollment year, women had significantly greater odds of antidepressant prescription (odds ratio = 2.29; 95% confidence interval = 2.07, 2.54). Furthermore, selective serotonin reuptake inhibitors (SSRIs) had a significant age-sex interaction. While SSRI prescriptions in men showed a sustained decrease with age, there was no such decline for women until after reaching ∼50 years of age. There are important limitations to consider in this study. Electronic prescription data were cross-sectional; information on treatment duration or adherence was not collected; this cohort is not nationally representative; and enrollment occurred over a broad period, introducing confounding by changes in temporal prescribing practices. Conclusions: Underscored by the significant interaction between age and sex on odds of SSRI prescription, our results warrant age to be incorporated as a mediator when investigating sex differences in mental illness, especially mood disorders and their treatment.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Caracteres Sexuais , Adulto , Humanos , Feminino , Masculino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Estudos Retrospectivos , Prevalência , Antidepressivos/uso terapêutico , Estudos de Coortes
6.
Circ Res ; 133(10): 810-825, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37800334

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/metabolismo , Volume Sistólico , Estudo de Associação Genômica Ampla , Função Ventricular Esquerda , Fibrose , Antígenos de Neoplasias/uso terapêutico , Moléculas de Adesão Celular/metabolismo
7.
Mol Metab ; 77: 101798, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689244

RESUMO

OBJECTIVE: Fibroblast growth factor 21 (FGF21) analogs have been tested as potential therapeutics for substance use disorders. Prior research suggests that FGF21 administration might affect alcohol consumption and reward behaviors. Our recent report showed that plasma FGF21 levels were positively correlated with alcohol use in patients with alcohol use disorder (AUD). FGF21 has a short half-life (0.5-2 h) and crosses the blood-brain barrier. Therefore, we set out to identify molecular mechanisms for both the naïve form of FGF21 and a long-acting FGF21 molecule (PF-05231023) in induced pluripotent stem cell (iPSC)-derived forebrain neurons. METHODS: We performed RNA-seq in iPSC-derived forebrain neurons treated with naïve FGF21 or PF-05231023 at physiologically relevant concentrations. We obtained plasma levels of FGF21 and GABA from our previous AUD clinical trial (n = 442). We performed ELISA for FGF21 in both iPSC-derived forebrain neurons and forebrain organoids. We determined protein interactions using co-immunoprecipitation. Finally, we applied ChIP assays to confirm the occupancy of REST, EZH2 and H3K27me3 by FGF21 using iPSC-derived forebrain neurons with and without drug exposure. RESULTS: We identified 4701 and 1956 differentially expressed genes in response to naïve FGF21 or PF-05231023, respectively (FDR < 0.05). Notably, 974 differentially expressed genes overlapped between treatment with naïve FGF21 and PF-05231023. REST was the most important upstream regulator of differentially expressed genes. The GABAergic synapse pathway was the most significant pathway identified using the overlapping genes. We also observed a significant positive correlation between plasma FGF21 and GABA concentrations in AUD patients. In parallel, FGF21 and PF-05231023 significantly induced GABA levels in iPSC-derived neurons. Finally, functional genomics studies showed a drug-dependent occupancy of REST, EZH2, and H3K27me3 in the promoter regions of genes involved in GABA catabolism which resulted in transcriptional repression. CONCLUSIONS: Our results highlight a significant role in the epigenetic regulation of genes involved in GABA catabolism related to FGF21 action. (The ClinicalTrials.gov Identifier: NCT00662571).

8.
Prostate ; 83(7): 649-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924119

RESUMO

OBJECTIVE: Elevated serum chromogranin A (CGA) is associated with intrinsic or treatment-related neuroendocrine differentiation (NED) in men with metastatic castration-resistant prostate cancer (mCRPC). Fluctuations in serum CGA during treatment of mCRPC have had conflicting results. We analyzed the impact of (i) rising serum CGA and (ii) baseline CGA/PSA ratio during treatment to identify associations with abiraterone acetate (AA) therapy. METHODS: Between June 2013 and August 2015, 92 men with mCRPC were enrolled in a prospective trial with uniform serum CGA processing performed before initiating abiraterone acetate/prednisone (AA/P) and serially after 12 weeks of AA/P treatments. Serum CGA was measured using a homogenous automated immunofluorescent assay. Patients receiving proton pump inhibitors or with abnormal renal function were excluded due to possible false elevations of serum CGA (n = 21 excluded), therefore 71 patients were analyzed. All patients underwent a composite response assessment at 12-weeks. Kaplan-Meier estimates and Cox Regression models were used to calculate the association with time-to-treatment failure analyses and overall survival. RESULTS: An increase in chromogranin was associated with a lower risk of treatment failure (hazard ratio [HR]: 0.52, p = 0.0181). The median CGA/PSA ratio was 7.8 (2.6-16.0) and an elevated pretreatment CGA/PSA ratio above the median was associated with a lower risk of treatment failure (HR: 0.54 p value = 0.0185). An increase in CGA was not found to be associated with OS (HR: 0.71, 95% CI: 0.42-1.21, p = 0.207). An elevated baseline CGA/PSA ratio was not associated with OS (HR: 0.62, 95% CI: 0.37-1.03, p = 0.062). An increase in PSA after 12 weeks of treatment was associated with an increased risk of treatment failure (HR: 4.14, CI: 2.21-7.73, p = < 0.0001) and worse OS (HR: 2.93, CI: 1.57-4.45, p = < 0.0001). CONCLUSIONS: We show that an increasing chromogranin on AA/P and an elevated baseline CGA/PSA in patients with mCRPC were associated with a favorable response to AA/P with no changes in survival. There may be limited clinical utility in serum CGA testing to evaluate for lethal NED as AA/P did not induce lethal NED in this cohort. This highlights that not all patients with an increasing CGA have a worse OS.


Assuntos
Acetato de Abiraterona , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Acetato de Abiraterona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Cromogranina A , Cromograninas , Estudos Prospectivos , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Retrospectivos , Resultado do Tratamento
9.
Cancer Res ; 83(3): 456-470, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36469363

RESUMO

Androgen receptor (AR) is expressed in 80% to 90% of estrogen receptor α-positive (ER+) breast cancers. Accumulated evidence has shown that AR is a tumor suppressor and that its expression is associated with improved prognosis in ER+ breast cancer. However, both a selective AR agonist (RAD140) and an AR inhibitor (enzalutamide, ENZ) have shown a therapeutic effect on ER+ breast cancer, so the potential for clinical application of AR-targeting therapy for ER+ breast cancer is still in dispute. In this study, we evaluated the efficacy of ENZ and RAD140 in vivo and in vitro in AR+/ER+ breast cancer models, characterizing the relationship of AR and ER levels to response to AR-targeting drugs and investigating the alterations of global gene expression and chromatin binding of AR and ERα after ENZ treatment. In the AR-low setting, ENZ directly functioned as an ERα antagonist. Cell growth inhibition by ENZ in breast cancer with low AR expression was independent of AR and instead dependent on ER. In AR-high breast cancer models, AR repressed ERα signaling and ENZ promoted ERα signaling by antagonizing AR. In contrast, RAD140 activated AR signaling and suppressed AR-high tumor growth by deregulating ERα expression and blocking ERα function. Overall, analysis of the dynamic efficacies and outcomes of AR agonist, and antagonist in the presence of different AR and ERα levels reveals regulators of response and supports the clinical investigation of ENZ in selected ER+ tumors with a low AR/ER ratio and AR agonists in tumors with a high AR/ER ratio. SIGNIFICANCE: The ratio of androgen receptor to estrogen receptor in breast cancer dictates the response to AR-targeted therapies, providing guidelines for developing AR-directed treatment strategies for patients with breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Androgênios/farmacologia , Linhagem Celular Tumoral
10.
Drug Metab Dispos ; 51(1): 1-7, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153008

RESUMO

Cytochrome P450s (CYPs) display significant inter-individual variation in expression, much of which remains unexplained by known CYP single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators for several drug-metabolizing CYPs including CYP3A4 However, transcription factors (TFs) that might influence CYP expression through an effect on TSPYL expression are unknown. Therefore, we studied regulators of TSPYL expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence TSPYL expression using the ENCODE ChIPseq database. Subsequently, the expression of TSPYL1/2/4 as well as that of selected CYP targets for TSPYL regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence CYP expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to TSPYL1/2/4 gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased TSPYL1 and TSPYL4 expression and increased CYP3A4 expression, changes reversed by TSPYL1/4 overexpression. Potential binding sites for REST and ZBTB7A on the promoters of TSPYL1 and TSPYL4 were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the TSPYL1/4 promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of TSPYL1/4 gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of CYP expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both CYP expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators of cytochrome P450 (CYP) gene expression. Here, we report that variation in TSPYL expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in CYP expression and potentially, as a result, variation in drug biotransformation.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Masculino , Animais , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Citocromo P-450 CYP3A/genética , Testículo , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética
11.
Front Oncol ; 12: 999302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523978

RESUMO

Poly(ADP-ribose) (PAR) polymerase inhibitors (PARPi) either have been approved or being tested in the clinic for the treatment of a variety of cancers with homologous recombination deficiency (HRD). However, cancer cells can develop resistance to PARPi drugs through various mechanisms, and new biomarkers and combination therapeutic strategies need to be developed to support personalized treatment. In this study, a genome-wide CRISPR screen was performed in a prostate cancer cell line with 3D culture condition which identified novel signals involved in DNA repair pathways. One of these genes, TBL1XR1, regulates sensitivity to PARPi in prostate cancer cells. Mechanistically, we show that TBL1XR1 interacts with and stabilizes SMC3 on chromatin and promotes γH2AX spreading along the chromatin of the cells under DNA replication stress. TBL1XR1-SMC3 double knockdown (knockout) cells have comparable sensitivity to PARPi compared to SMC3 knockdown or TBL1XR1 knockout cells, and more sensitivity than WT cells. Our findings provide new insights into mechanisms underlying response to PARPi or platin compounds in the treatment of malignancies.

12.
Front Pharmacol ; 13: 1047318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518674

RESUMO

The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and ß-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking ß-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In ß-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/ß-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.

13.
Nucleic Acids Res ; 50(20): 11635-11653, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399508

RESUMO

Understanding the function of non-coding genomic sequence variants represents a challenge for biomedicine. Many diseases are products of gene-by-environment interactions with complex mechanisms. This study addresses these themes by mechanistic characterization of non-coding variants that influence gene expression only after drug or hormone exposure. Using glucocorticoid signaling as a model system, we integrated genomic, transcriptomic, and epigenomic approaches to unravel mechanisms by which variant function could be revealed by hormones or drugs. Specifically, we identified cis-regulatory elements and 3D interactions underlying ligand-dependent associations between variants and gene expression. One-quarter of the glucocorticoid-modulated variants that we identified had already been associated with clinical phenotypes. However, their affected genes were 'unmasked' only after glucocorticoid exposure and often with function relevant to the disease phenotypes. These diseases involved glucocorticoids as risk factors or therapeutic agents and included autoimmunity, metabolic and mood disorders, osteoporosis and cancer. For example, we identified a novel breast cancer risk gene, MAST4, with expression that was repressed by glucocorticoids in cells carrying the risk genotype, repression that correlated with MAST4 expression in breast cancer and treatment outcomes. These observations provide a mechanistic framework for understanding non-coding genetic variant-chemical environment interactions and their role in disease risk and drug response.


Assuntos
Glucocorticoides , Sequências Reguladoras de Ácido Nucleico , Glucocorticoides/genética , Glucocorticoides/metabolismo , Fatores de Risco , Humanos , Farmacogenética , Locos de Características Quantitativas
14.
Mol Psychiatry ; 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302966

RESUMO

The opioid epidemic represents a national crisis. Oxycodone is one of the most prescribed opioid medications in the United States, whereas buprenorphine is currently the most prescribed medication for opioid use disorder (OUD) pharmacotherapy. Given the extensive use of prescription opioids and the global opioid epidemic, it is essential to understand how opioids modulate brain cell type function at the single-cell level. We performed single nucleus RNA-seq (snRNA-seq) using iPSC-derived forebrain organoids from three male OUD subjects in response to oxycodone, buprenorphine, or vehicle for seven days. We utilized the snRNA-seq data to identify differentially expressed genes following drug treatment using the Seurat integrative analysis pipeline. We utilized iPSC-derived forebrain organoids and single-cell sequencing technology as an unbiased tool to study cell-type-specific and drug-specific transcriptional responses. After quality control filtering, we analyzed 25787 cells and identified sixteen clusters using unsupervised clustering analysis. Our results reveal distinct transcriptional responses to oxycodone and buprenorphine by iPSC-derived brain organoids from patients with OUD. Specifically, buprenorphine displayed a significant influence on transcription regulation in glial cells. However, oxycodone induced type I interferon signaling in many cell types, including neural cells in brain organoids. Finally, we demonstrate that oxycodone, but not buprenorphine activated STAT1 and induced the type I interferon signaling in patients with OUD. These data suggest that elevation of STAT1 expression associated with OUD might play a role in transcriptional regulation in response to oxycodone. In summary, our results provide novel mechanistic insight into drug action at single-cell resolution.

15.
Mol Cancer Res ; 20(12): 1739-1750, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135372

RESUMO

We identified resistance mechanisms to abiraterone acetate/prednisone (AA/P) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE) study.We analyzed whole-exome sequencing (WES) and RNA-sequencing data from 83 patients with metastatic biopsies before (V1) and after 12 weeks of AA/P treatment (V2). Resistance was determined by time to treatment change (TTTC).At V2, 18 and 11 of 58 patients had either short-term (median 3.6 months; range 1.4-4.5) or long-term (median 29 months; range 23.5-41.7) responses, respectively. Nonresponders had low expression of TGFBR3 and increased activation of the Wnt pathway, cell cycle, upregulation of AR variants, both pre- and posttreatment, with further deletion of AR inhibitor CDK11B posttreatment. Deletion of androgen processing genes, HSD17B11, CYP19A1 were observed in nonresponders posttreatment. Genes involved in cell cycle, DNA repair, Wnt-signaling, and Aurora kinase pathways were differentially expressed between the responder and non-responder at V2. Activation of Wnt signaling in nonresponder and deactivation of MYC or its target genes in responders was detected via SCN loss, somatic mutations, and transcriptomics. Upregulation of genes in the AURKA pathway are consistent with the activation of MYC regulated genes in nonresponders. Several genes in the AKT1 axis had increased mutation rate in nonresponders. We also found evidence of resistance via PDCD1 overexpression in responders. IMPLICATIONS: Finally, we identified candidates drugs to reverse AA/P resistance: topoisomerase inhibitors and drugs targeting the cell cycle via the MYC/AURKA/AURKB/TOP2A and/or PI3K_AKT_MTOR pathways.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Prednisona/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Aurora Quinase A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Acetato de Abiraterona/efeitos adversos
16.
Front Pharmacol ; 13: 986238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120372

RESUMO

Acamprosate is an anti-craving drug used in alcohol use disorder (AUD) pharmacotherapy. However, only a subset of patients achieves optimal treatment outcomes. The identification of predictive biomarkers of acamprosate treatment response in patients with AUD would be a substantial advance in addiction medicine. We designed this study to use proteomics data as a quantitative biological trait as a step toward identifying inflammatory modulators that might be associated with acamprosate treatment outcomes. The NIAAA-funded Mayo Clinic Center for the Individualized Treatment of Alcoholism study had previously recruited 442 AUD patients who received 3 months of acamprosate treatment. However, only 267 subjects returned for the 3-month follow-up visit and, as a result, had treatment outcome information available. Baseline alcohol craving intensity was the most significant predictor of acamprosate treatment outcomes. We performed plasma proteomics using the Olink target 96 inflammation panel and identified that baseline plasma TNF superfamily member 10 (TNFSF10) concentration was associated with alcohol craving intensity and variation in acamprosate treatment outcomes among AUD patients. We also performed RNA sequencing using baseline peripheral blood mononuclear cells from AUD patients with known acamprosate treatment outcomes which revealed that inflammation-related pathways were highly associated with relapse to alcohol use during the 3 months of acamprosate treatment. These observations represent an important step toward advancing our understanding of the pathophysiology of AUD and molecular mechanisms associated with acamprosate treatment response. In conclusion, applying omics-based approaches may be a practical approach for identifying biologic markers that could potentially predict alcohol craving intensity and acamprosate treatment response.

17.
Clin Transl Sci ; 15(11): 2758-2771, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36128656

RESUMO

Alternative polyadenylation (APA) is a common genetic regulatory mechanism that generates distinct 3' ends for RNA transcripts. Changes in APA have been associated with multiple biological processes and disease phenotypes. However, the role of hormones and their drug analogs in APA remains largely unknown. In this study, we investigated transcriptome-wide the impact of glucocorticoids on APA in 30 human B-lymphoblastoid cell lines. We found that glucocorticoids could regulate APA for a subset of genes, possibly by changing the expression of 142 RNA-binding proteins, some with known APA-regulating properties. Interestingly, genes with glucocorticoid-mediated APA were enriched in viral translation-related pathways, while genes with glucocorticoid-mediated expression were enriched in interferon and interleukin pathways, suggesting that glucocorticoid-mediated APA might result in functional consequences distinct from gene expression. For example, glucocorticoids, a pharmacotherapy for severe COVID-19, were found to change the APA but not the expression of LY6E, an important antiviral inhibitor in coronavirus diseases. Glucocorticoid-mediated APA was also cell-type-specific, suggesting an action of glucocorticoids that may be unique to immune regulation. We also observed evidence for genotype-dependent glucocorticoid-mediated APA (referred to as pharmacogenomic-alterative polyadenylation quantitative trait loci), providing potential functional mechanisms for a series of common genetic variants that had previously been associated with immune disorders, but without a clear mechanism. In summary, this study reports a series of observations regarding the impact of glucocorticoids on APA, raising the possibility that this mechanism might have implications for both disease pathophysiology and drug therapy.


Assuntos
COVID-19 , Poliadenilação , Humanos , Poliadenilação/genética , Transcriptoma , Glucocorticoides/farmacologia , Proteínas de Ligação a RNA
18.
Oncogene ; 41(35): 4119-4129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864174

RESUMO

The HER2 receptor modulates downstream signaling by forming homodimers and heterodimers with other members of the HER family. For patients with HER2-positive breast cancer, Trastuzumab, an anti-HER2 monoclonal antibody as first-line therapy has shown significant survival benefits. However, the development of acquired resistance to Trastuzumab continues to be a significant obstacle. TNF receptor-associated factor 4 (TRAF4) upregulation was discovered to be associated with a worse clinical outcome. Here we identified TRAF4 overexpression as one of the putative mechanisms for HER2-positive breast cancer cells to maintain HER2 signaling during Trastuzumab treatment, while TRAF4 knockdown reduced HER2 stability and improved Trastuzumab sensitivity. Mechanistically, TRAF4 regulates HER2 level through its impact on SMAD specific E3 ubiquitin protein ligase protein 2 (SMURF2). The development of a membrane-associated protein complex containing HER2, TRAF4, and SMURF2 has been observed. SMURF2 bound to the HER2 cytoplasmic domain, and directly ubiquitinated it leading to HER2 degradation, whereas TRAF4 stabilized HER2 by degrading SMURF2 and inhibiting the binding of SMURF2 to HER2. Moreover, downregulation of TRAF4 has decreased the AKT/mTOR signaling. In conclusion, we discovered a new HER2 signaling regulation that involves the TRAF4-SMURF2 complex, a possible mechanism that might contribute to anti-HER2 resistance, making TRAF4 a viable target for treating HER2 + breast cancer.


Assuntos
Neoplasias da Mama , Fator 4 Associado a Receptor de TNF , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Receptor ErbB-2 , Transdução de Sinais , Trastuzumab , Ubiquitina-Proteína Ligases
20.
NAR Cancer ; 4(2): zcac018, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35734391

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low overall survival rates and high molecular heterogeneity; therefore, few targeted therapies are available. The luminal androgen receptor (LAR) is the most consistently identified TNBC subtype, but the clinical utility has yet to be established. Here, we constructed a novel genomic classifier, LAR-Sig, that distinguishes the LAR subtype from other TNBC subtypes and provide evidence that it is a clinically distinct disease. A meta-analysis of seven TNBC datasets (n = 1086 samples) from neoadjuvant clinical trials demonstrated that LAR patients have significantly reduced response (pCR) rates than non-LAR TNBC patients (odds ratio = 2.11, 95% CI: 1.33, 2.89). Moreover, deconvolution of the tumor microenvironment confirmed an enrichment of luminal epithelium corresponding with a decrease in basal and myoepithelium in LAR TNBC tumors. Increased immunosuppression in LAR patients may lead to a decreased presence of cycling T-cells and plasma cells. While, an increased presence of myofibroblast-like cancer-associated cells may impede drug delivery and treatment. In summary, the lower levels of tumor infiltrating lymphocytes (TILs), reduced immune activity in the micro-environment, and lower pCR rates after NAC, suggest that new therapeutic strategies for the LAR TNBC subtype need to be developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA