Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cochrane Database Syst Rev ; 5: CD012611, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046132

RESUMO

BACKGROUND: One nutritional intervention advocated to prevent malnutrition among children is lipid-based nutrient supplements (LNS). LNS provide a range of vitamins and minerals, but unlike most other micronutrient supplements, LNS also provide energy, protein and essential fatty acids. Alternative recipes and formulations to LNS include fortified blended foods (FBF), which are foods fortified with vitamins and minerals, and micronutrient powders (MNP), which are a combination of vitamins and minerals, OBJECTIVES: To assess the effects and safety of preventive LNS given with complementary foods on health, nutrition and developmental outcomes of non-hospitalised infants and children six to 23 months of age, and whether or not they are more effective than other foods (including FBF or MNP).This review did not assess the effects of LNS as supplementary foods or therapeutic foods in the management of moderate and severe acute malnutrition. SEARCH METHODS: In October 2018, we searched CENTRAL, MEDLINE, Embase, 21 other databases and two trials registers for relevant studies. We also checked the reference lists of included studies and relevant reviews and contacted the authors of studies and other experts in the area for any ongoing and unpublished studies. SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs that evaluated the impact of LNS plus complementary foods given at point-of-use (for any dose, frequency, duration) to non-hospitalised infants and young children aged six to 23 months in stable or emergency settings and compared to no intervention, other supplementary foods (i.e. FBF), nutrition counselling or multiple micronutrient supplements or powders for point-of-use fortification of complementary foods. DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies for relevance and, for those studies included in the review, extracted data, assessed risk of bias and rated the quality of the evidence using the GRADE approach. We carried out statistical analysis using Review Manager software. We used a random-effects meta-analysis for combining data as the interventions differed significantly. We set out the main findings of the review in 'Summary of findings' tables,. MAIN RESULTS: Our search identified a total of 8124 records, from which we included 17 studies (54 papers) with 23,200 children in the review. The included studies reported on one or more of the pre-specified primary outcomes, and five studies included multiple comparison groups.Overall, the majority of trials were at low risk of bias for random sequence generation, allocation concealment, blinding of outcome assessment, incomplete outcome data, selective reporting and other sources of bias, but at high risk of bias for blinding of participants and personnel due to the nature of the intervention. Using the GRADE approach, we judged the quality of the evidence for most outcomes as low or moderate.LNS+complementary feeding compared with no intervention Thirteen studies compared LNS plus complementary feeding with no intervention. LNS plus complementary feeding reduced the prevalence of moderate stunting by 7% (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.88 to 0.98; nine studies, 13,372 participants; moderate-quality evidence), severe stunting by 15% (RR 0.85, 95% CI 0.74 to 0.98; five studies, 6151 participants; moderate-quality evidence), moderate wasting by 18% (RR 0.82, 95% CI 0.74 to 0.91; eight studies; 13,172 participants; moderate-quality evidence), moderate underweight by 15% (RR 0.85, 95% CI 0.80 to 0.91; eight studies, 13,073 participants; moderate-quality evidence), and anaemia by 21% (RR 0.79, 95% CI 0.69 to 0.90; five studies, 2332 participants; low-quality evidence). There was no impact of LNS plus complementary feeding on severe wasting (RR 1.27, 95% CI 0.66 to 2.46; three studies, 2329 participants) and severe underweight (RR 0.78, 95%CI 0.54 to 1.13; two studies, 1729 participants). Adverse effects did not differ between the groups (RR 0.86, 95% CI 0.74 to 1.01; three studies, 3382 participants).LNS+complementary feeding compared with FBF Five studies compared LNS plus complementary feeding with other FBF, including corn soy blend and UNIMIX. We pooled four of the five studies in meta-analyses and found that, when compared to other FBF, LNS plus complementary feeding significantly reduced the prevalence of moderate stunting (RR 0.89, 95% CI 0.82 to 0.97; three studies, 2828 participants; moderate-quality evidence), moderate wasting (RR 0.79, 95% CI 0.65 to 0.97; two studies, 2290 participants; moderate-quality evidence), and moderate underweight (RR 0.81, 95% CI 0.73 to 0.91; two studies, 2280 participants; moderate-quality evidence). We found no difference between LNS plus complementary feeding and FBF for severe stunting (RR 0.41, 95% CI 0.12 to 1.42; two studies, 729 participants; low-quality evidence), severe wasting (RR 0.64, 95% CI 0.19 to 2.81; two studies, 735 participants; moderate-quality evidence), and severe underweight (RR 1.23, 95% CI 0.67 to 2.25; one study, 173 participants; low-quality evidence).LNS+complementary feeding compared with MNP Four studies compared LNS plus complementary feeding with MNP. We pooled data from three of the four studies in meta-analyses and found that compared to MNP, LNS plus complementary feeding significantly reduced the prevalence of moderate underweight (RR 0.88, 95% CI 0.78 to 0.99; two studies, 2004 participants; moderate-quality evidence) and anaemia (RR 0.38, 95% CI 0.21 to 0.68; two studies, 557 participants; low-quality evidence). There was no difference between LNS plus complementary feeding and MNP for moderate stunting (RR 0.92, 95% CI 0.82 to 1.02; three studies, 2365 participants) and moderate wasting (RR 0.97, 95% CI 0.77 to 1.23; two studies, 2004 participants). AUTHORS' CONCLUSIONS: The findings of this review suggest that LNS plus complementary feeding compared to no intervention is effective at improving growth outcomes and anaemia without adverse effects among children aged six to 23 months in low- and middle-income countries (LMIC) in Asia and Africa, and more effective if provided over a longer duration of time (over 12 months). Limited evidence also suggests that LNS plus complementary feeding is more effective than FBF and MNP at improving growth outcomes.


Assuntos
Desenvolvimento Infantil/fisiologia , Gorduras na Dieta/administração & dosagem , Fenômenos Fisiológicos da Nutrição do Lactente , Estado Nutricional , Pré-Escolar , Suplementos Nutricionais , Alimentos Formulados , Alimentos Fortificados , Humanos , Lactente
2.
Cochrane Database Syst Rev ; 8: CD012610, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30168868

RESUMO

BACKGROUND: Ready-to-use lipid-based nutrient supplements (LNS) are a highly nutrient-dense supplement, which could be a good source of macro- and micronutrients for pregnant women who need to supplement their nutrient intake. OBJECTIVES: To assess the effects of LNS for maternal, birth and infant outcomes in pregnant women. Secondary objectives were to explore the most appropriate composition, frequency and duration of LNS administration. SEARCH METHODS: In May 2018, we searched CENTRAL, MEDLINE, Embase, 22 other databases and two trials registers for any published and ongoing studies. We also checked the reference lists of included studies and relevant reviews, and we contacted the authors of included studies and other experts in the field to identify any studies we may have missed, including any unpublished studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-RCTs that compared LNS given in pregnancy to no intervention, placebo, iron folic acid (IFA), multiple micronutrients (MMN) or nutritional counselling. DATA COLLECTION AND ANALYSIS: We used standard Cochrane procedures. MAIN RESULTS: We included four studies in 8018 pregnant women. All four studies took place in stable community settings in low- and middle-income countries: Bangladesh, Burkina Faso, Ghana and Malawi. None were in emergency settings. The oldest trial was published in 2009. Of the four included studies, one compared LNS to IFA, one compared LNS to MMN, and two compared LNS to both IFA and MMN.We considered the included studies to be of medium to high quality, and we rated the quality of the evidence as moderate using the GRADE approach.LNS versus IFAMaternal outcomes: there was no difference between the LNS and IFA groups as regards maternal gestational weight gain per week (standard mean difference (SMD) 0.46, 95% confidence interval (CI) -0.44 to 1.36; 2 studies, 3539 participants). One study (536 participants) showed a two-fold increase in the prevalence of maternal anaemia in the LNS group compared to the IFA group, but no difference between the groups as regards adverse effects. There was no difference between the two groups for maternal mortality (risk ratio (RR) 0.53, 95% CI 0.12 to 2.41; 3 studies, 5628 participants).Birth and infant outcomes: there was no difference between the LNS and IFA groups for low birth weight (LBW) (RR 0.87, 95% CI 0.72 to 1.05; 3 studies, 4826 participants), though newborns in the LNS group had a slightly higher mean birth weight (mean difference (MD) 53.28 g, 95% CI 28.22 to 78.33; 3 studies, 5077 participants) and birth length (cm) (MD 0.24 cm, 95% CI 0.11 to 0.36; 3 studies, 4986 participants). There was a reduction in the proportion of infants who were small for gestational age (SGA) (RR 0.94, 95% CI 0.89 to 0.99; 3 studies, 4823 participants) and had newborn stunting (RR 0.82, 95% CI 0.71 to 0.94; 2 studies, 4166 participants) in the LNS group, but no difference between the LNS and IFA groups for preterm delivery (RR 0.94, 95% CI 0.80 to 1.11; 4 studies, 4924 participants), stillbirth (RR 1.14; 95% CI 0.52 to 2.48; 3 studies, 5575 participants) or neonatal death (RR 0.96, 95% CI 0.14 to 6.51). The current evidence for child developmental outcomes is not sufficient to draw any firm conclusions.LNS versus MMNMaternal outcomes: one study (662 participants) showed no difference between the LNS and MMN groups as regards gestational weight gain per week or adverse effects. Another study (557 participants) showed an increased risk of maternal anaemia in the LNS group compared to the MMN group.Birth and infant outcomes: there was no difference between the LNS and MMN groups for LBW (RR 0.92, 95% CI 0.74 to 1.14; 3 studies, 2404 participants), birth weight (MD 23.67 g, 95% CI -10.53 to 57.86; 3 studies, 2573 participants), birth length (MD 0.20 cm, 95% CI -0.02 to 0.42; 3 studies, 2567 participants), SGA (RR 0.95, 95% CI 0.84 to 1.07; 3 studies, 2393 participants), preterm delivery (RR 1.15, 95% CI 0.93 to 1.42; 3 studies, 2630 participants), head circumference z score (MD 0.10, 95% CI -0.01 to 0.21; 2 studies, 1549 participants) or neonatal death (RR 0.88, 95% CI 0.36 to 2.15; 1 study, 1175 participants). AUTHORS' CONCLUSIONS: Findings from this review suggest that LNS supplementation has a slight, positive effect on weight at birth, length at birth, SGA and newborn stunting compared to IFA. LNS and MMN were comparable for all maternal, birth and infant outcomes. Both IFA and MMN were better at reducing maternal anaemia when compared to LNS. We did not find any trials for LNS given to pregnant women in emergency settings.Readers should interpret the beneficial findings of the review with caution since the evidence comes from a small number of trials, with one-large scale study (conducted in community settings in Bangladesh) driving most of the impact. In addition, effect sizes are too small to propose any concrete recommendation for practice.


Assuntos
Peso ao Nascer , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Ferro/administração & dosagem , Aumento de Peso , Anemia/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido Pequeno para a Idade Gestacional , Mortalidade Materna , Gravidez , Complicações Hematológicas na Gravidez/epidemiologia , Nascimento Prematuro/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Glob Health Sci Pract ; 6(3): 552-564, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30185435

RESUMO

BACKGROUND: A stubborn persistence of child severe acute malnutrition (SAM) and continued gaps in program coverage have made identifying methods for expanding detection, diagnosis, and treatment of SAM an urgent public health need. There is growing consensus that making mid-upper arm circumference (MUAC) use more widely accessible among caregivers and community health workers (CHWs) is an important next step in further decentralizing SAM care and increasing program coverage, including the ability of CHWs to treat uncomplicated SAM in community settings. METHODS: We conducted a systematic review to summarize published and operational evidence published since 2000 describing the use of MUAC for detection and diagnosis of SAM in children aged 6-59 months by caregivers and CHWs, and of management of uncomplicated SAM by CHWs, all outside of formal health care settings. We screened 1,072 records, selected 43 records for full-text screening, and identified 22 studies that met our eligibility criteria. We extracted data on a number of items, including study design, strengths, and weaknesses; intervention and control; and key findings and operational lessons. We then synthesized the qualitative findings to inform our conclusions. The issue of treating children classified as SAM based on low weight-for-height, rather than MUAC, at household level, is not addressed in this review. FINDINGS: We found evidence that caregivers are able to use MUAC to detect SAM in their children with minimal risk and many potential benefits to early case detection and coverage. We also found evidence that CHWs are able to correctly use MUAC for SAM detection and diagnosis and to provide a high quality of care in the treatment of uncomplicated SAM when training, supervision, and motivation are adequate. However, the number of published research studies was small, their geographic scope was narrow, and most described intensive, small-scale interventions; thus, findings are not currently generalizable to public-sector health care systems. CONCLUSIONS: Scaling up the use of MUAC by caregivers and CHWs to detect SAM in household and community settings is a promising step toward improving the coverage of SAM detection, diagnosis, and treatment. Further research on scalability, applicability across a wider range of contexts, coverage impact, and cost is needed. The primary use of MUAC for SAM detection should also be explored where appropriate.


Assuntos
Braço/anatomia & histologia , Desnutrição Aguda Grave/diagnóstico , Desnutrição Aguda Grave/terapia , Criança , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
PLoS Negl Trop Dis ; 11(4): e0005528, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28394887

RESUMO

BACKGROUND: Zika virus (ZIKV) infection is an emerging mosquito-borne disease, which is associated with an increase in central nervous system malformations and newborn microcephaly cases. This review investigated evidence of breastfeeding transmission from ZIKV-infected mothers to their children and the presence of ZIKV infection in breastfeeding-related fluids. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a systematic review of observational studies, case studies, and surveillance reports involving breastfeeding women with ZIKV infection in several international databases. Data extraction and analysis were conducted following a PROSPERO-registered protocol. From 472 non-duplicate records, two case reports met criteria for inclusion. We reviewed three cases of ZIKV infection among lactating mothers near the time of delivery. Two of the three (2/3) associated newborns had evidence of ZIKV infection. ZIKV was detected in breast milk of all three mothers. Breast milk detection results were positive in all mothers (3/3) by RT-PCR, one was positive by culture (1/3), and none was tested for ZIKV-specific antibodies. Serum samples were ZIKV positive in all mothers (3/3), and sweat was not tested for ZIKV. CONCLUSIONS/SIGNIFICANCE: We describe three cases of ZIKV-infected breastfeeding mothers who were symptomatic within three days of delivery, and two cases with ZIKV-infected newborns. While ZIKV was detected in the breast milk of all three mothers, the data are not sufficient to conclude ZIKV transmission via breastfeeding. More evidence is needed to distinguish breastfeeding transmission from other perinatal transmission routes.


Assuntos
Aleitamento Materno/efeitos adversos , Transmissão Vertical de Doenças Infecciosas , Leite Humano/virologia , Infecção por Zika virus/transmissão , Zika virus/isolamento & purificação , Feminino , Humanos , Recém-Nascido , Microcefalia/virologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA