Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139150

RESUMO

The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.


Assuntos
Doenças Neurodegenerativas , Proteína Fosfatase 1 , Animais , Humanos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos Knockout , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo
3.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784920

RESUMO

The Cpi-17 (ppp1r14) gene family is an evolutionarily conserved, vertebrate specific group of protein phosphatase 1 (PP1) inhibitors. When phosphorylated, Cpi-17 is a potent inhibitor of myosin phosphatase (MP), a holoenzyme complex of the regulatory subunit Mypt1 and the catalytic subunit PP1. Myosin phosphatase dephosphorylates the regulatory myosin light chain (Mlc2) and promotes actomyosin relaxation, which in turn, regulates numerous cellular processes including smooth muscle contraction, cytokinesis, cell motility, and tumor cell invasion. We analyzed zebrafish homologs of the Cpi-17 family, to better understand the mechanisms of myosin phosphatase regulation. We found single homologs of both Kepi (ppp1r14c) and Gbpi (ppp1r14d) in silico, but we detected no expression of these genes during early embryonic development. Cpi-17 (ppp1r14a) and Phi-1 (ppp1r14b) each had two duplicate paralogs, (ppp1r14aa and ppp1r14ab) and (ppp1r14ba and ppp1r14bb), which were each expressed during early development. The spatial expression pattern of these genes has diverged, with ppp1r14aa and ppp1r14bb expressed primarily in smooth muscle and skeletal muscle, respectively, while ppp1r14ab and ppp1r14ba are primarily expressed in neural tissue. We observed that, in in vitro and heterologous cellular systems, the Cpi-17 paralogs both acted as potent myosin phosphatase inhibitors, and were indistinguishable from one another. In contrast, the two Phi-1 paralogs displayed weak myosin phosphatase inhibitory activity in vitro, and did not alter myosin phosphorylation in cells. Through deletion and chimeric analysis, we identified that the difference in specificity for myosin phosphatase between Cpi-17 and Phi-1 was encoded by the highly conserved PHIN (phosphatase holoenzyme inhibitory) domain, and not the more divergent N- and C- termini. We also showed that either Cpi-17 paralog can rescue the knockdown phenotype, but neither Phi-1 paralog could do so. Thus, we provide new evidence about the biochemical and developmental distinctions of the zebrafish Cpi-17 protein family.


Assuntos
Proteínas de Peixes/genética , Genes Duplicados/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Proteínas/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Evolução Molecular , Proteínas de Peixes/classificação , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/classificação , Proteínas Musculares/metabolismo , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Proteínas/classificação , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Gene ; 675: 15-26, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29960069

RESUMO

Myosin phosphatase is an evolutionarily conserved regulator of actomyosin contractility, comprised of a regulatory subunit (Mypt1), and a catalytic subunit (PP1). Zebrafish has become an ideal model organism for the study of the genetic and cell physiological role of the myosin phosphatase in morphogenesis and embryonic development. We identified and characterized a novel splice variant of Mypt1 (ppp1r12a-tv202) from zebrafish, which is widely expressed during early embryonic development. Importantly, mutant alleles and antisense morpholinos that have been used to demonstrate the important role of Mypt1 in early development, not only disrupt the longer splice variants, but also tv202. The protein product of ppp1r12a-tv202 (Mypt1-202) contains the PP1-binding N-terminus, but lacks the regulatory C-terminus, which contains two highly conserved inhibitory phosphorylation sites. We observed that the protein product of tv202 assembled a constitutively active myosin phosphatase uninhibited by kinases such as Zipk. Thus, we propose that Mypt1-202 plays an important role in maintaining baseline Mlc2 dephosphorylation and actomyosin relaxation during early zebrafish development.


Assuntos
Processamento Alternativo/genética , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosfatase de Miosina-de-Cadeia-Leve/genética , Peixe-Zebra/genética , Citoesqueleto de Actina/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Domínio Catalítico/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Isoenzimas/química , Isoenzimas/genética , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Peixe-Zebra/embriologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-26482085

RESUMO

Mitochondria exhibit dynamic locomotion and spatial rearrangement. This movement is necessary for a cell to maintain basic metabolic functions, and disruption of motility often results in cell death. Miro is a mitochondrial outer membrane Rho GTPase essential for mitochondrial movement and distribution in diverse systems, including yeast, animals, and plants. We sought to study the previously uncharacterized Miro protein family in zebrafish. We confirmed that, like human Miro, the zebrafish Miro proteins (Rhot1a, Rhot1b, and Rhot2) localize to mitochondria in mammalian tissue culture cells by both biochemical fractionation and immunofluorescent colocalization. In addition, using whole mount in situ hybridization, we observed ubiquitous expression of all three mRNAs throughout development. By microinjecting three antisense morpholino oligonucleotides targeted to each of the rhot genes, we knocked down all three proteins simultaneously in developing zebrafish embryos. The triple morphants demonstrated a dose-dependent defect in posterior body-axis elongation, while a single knockdown of each protein at the same dose produced no effect. This phenotype could be rescued with human Miro1 mRNA and is most likely due to increased cell death. Taken altogether, this research demonstrates the importance of the Rhot proteins during vertebrate development.


Assuntos
Mitocôndrias/enzimologia , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Humanos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Peixe-Zebra/crescimento & desenvolvimento , Proteínas rho de Ligação ao GTP/química
6.
Int J Mol Sci ; 15(7): 11597-613, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24983477

RESUMO

Zipper-interacting protein kinase (ZIPK) is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.


Assuntos
Núcleo Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proteínas Quinases Associadas com Morte Celular/química , Proteínas Quinases Associadas com Morte Celular/genética , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Especificidade da Espécie , Peixe-Zebra
7.
PLoS One ; 8(9): e75766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040418

RESUMO

BACKGROUND: The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. METHODOLOGY/PRINCIPAL FINDINGS: We observed that in zebrafish two paralogous genes encoding PP1ß, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that zebrafish have two genes encoding PP1ß, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.


Assuntos
Domínio Catalítico , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra/genética , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Miosinas Cardíacas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosforilação , Proteína Fosfatase 1/química , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
8.
Methods Mol Biol ; 839: 53-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22218892

RESUMO

Gastrulation is a complex set of cellular rearrangements that establish the overall shape of the body plan during development. In addition to being an essential and fascinating aspect of development, the cells of the gastrulating zebrafish embryo also provide an ideal in vivo system to study the interplay of cell polarity and movement in a native 3D environment. During gastrulation, zebrafish mesodermal cells undergo a series of conversions from initial non-polarized amoeboid cell movements to more mesenchymal and finally highly polarized and intercalative cell behaviors. Many of the cellular behavior changes of these cells are under the control of the RhoA pathway, which in turn is regulated by many signals, including non-canonical Wnts. The goal of this chapter is to provide researchers with the necessary protocols to examine changes in cell polarity and movement in the developing zebrafish embryo.


Assuntos
Polaridade Celular , Forma Celular , Embrião não Mamífero/citologia , Gastrulação , Peixe-Zebra/embriologia , Animais , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Gastrulação/efeitos dos fármacos , Hibridização In Situ , Injeções , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
9.
PLoS One ; 5(5): e10712, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20502708

RESUMO

BACKGROUND: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Morte Celular , Sequência Conservada/genética , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
10.
Development ; 136(14): 2375-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19515695

RESUMO

Rho-dependent amoeboid cell movement is a crucial mechanism in both tumor cell invasion and morphogenetic cell movements during fish gastrulation. Amoeboid movement is characterized by relatively non-polarized cells displaying a high level of bleb-like protrusions. During gastrulation, zebrafish mesodermal cells undergo a series of conversions from amoeboid cell behaviors to more mesenchymal and finally highly polarized and intercalative cell behaviors. We demonstrate that Myosin phosphatase, a complex of Protein phosphatase 1 and the scaffolding protein Mypt1, functions to maintain the precise balance between amoeboid and mesenchymal cell behaviors required for cells to undergo convergence and extension. Importantly, Mypt1 has different cell-autonomous and non-cell-autonomous roles. Loss of Mypt1 throughout the embryo causes severe convergence defects, demonstrating that Mypt1 is required for the cell-cell interactions involved in dorsal convergence. By contrast, mesodermal Mypt1 morphant cells transplanted into wild-type hosts undergo dorsally directed cell migration, but they fail to shut down their protrusive behavior and undergo the normal intercalation required for extension. We further show that Mypt1 activity is regulated in embryos by Rho-mediated inhibitory phosphorylation, which is promoted by non-canonical Wnt signaling. We propose that Myosin phosphatase is a crucial and tightly controlled regulator of cell behaviors during gastrulation and that understanding its role in early development also provides insight into the mechanism of cancer cell invasion.


Assuntos
Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Gastrulação/fisiologia , Humanos , Células L , Camundongos , Modelos Biológicos , Fosfatase de Miosina-de-Cadeia-Leve/antagonistas & inibidores , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fenótipo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
11.
Biochem Biophys Res Commun ; 375(4): 512-516, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18725198

RESUMO

Gravin (AKAP12, SSeCKS) is a scaffolding protein that acts as a potent inhibitor of tumor metastasis in vivo and in vitro, and regulates morphogenesis during vertebrate gastrulation. Despite being implicated in many cellular processes, surprisingly little is known about the mechanism by which Gravin elicits cell shape changes. In this work, we use in vitro cell spreading assays to demonstrate that the Gravin N-terminus containing the three MARCKS-like basic regions (BRs) is necessary and sufficient to regulate cell shape in vitro. We show that the conserved phosphorylation sites in the BRs are essential for their function in these assays. We further demonstrate that the Gravin BRs are necessary for in vivo function during gastrulation in zebrafish. Together, these results provide an important step forward in understanding the mechanism of Gravin function in cell shape regulation and provide valuable insight into how Gravin acts as a cytoskeletal regulator.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Forma Celular , Proteínas de Peixe-Zebra/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Células COS , Membrana Celular/enzimologia , Movimento Celular/genética , Forma Celular/genética , Chlorocebus aethiops , Estrutura Terciária de Proteína , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Genes Dev ; 21(12): 1559-71, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575056

RESUMO

Convergent extension of the mesoderm is the major driving force of vertebrate gastrulation. During this process, mesodermal cells move toward the future dorsal side of the embryo, then radically change behavior as they initiate extension of the body axis. How cells make this transition in behavior is unknown. We have identified the scaffolding protein and tumor suppressor Gravin as a key regulator of this process in zebrafish embryos. We show that Gravin is required for the conversion of mesodermal cells from a highly migratory behavior to the medio-laterally intercalative behavior required for body axis extension. In the absence of Gravin, paraxial mesodermal cells fail to shut down the protrusive activity mediated by the Rho/ROCK/Myosin II pathway, resulting in embryos with severe extension defects. We propose that Gravin functions as an essential scaffold for regulatory proteins that suppress the migratory behavior of the mesoderm during gastrulation, and suggest that this function also explains how Gravin inhibits invasive behaviors in metastatic cells.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Proteínas/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Proteínas de Ancoragem à Quinase A/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal , Proteínas de Ciclo Celular , Movimento Celular , Forma Celular , Gástrula/citologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Modelos Biológicos , Dados de Sequência Molecular , Miosina Tipo II/metabolismo , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteína rhoA de Ligação ao GTP/metabolismo
13.
J Biol Chem ; 280(16): 15903-11, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15703180

RESUMO

Cellular functions of protein phosphatase-1 (PP1), a major eukaryotic serine/threonine phosphatase, are defined by the association of PP1 catalytic subunits with endogenous protein inhibitors and regulatory subunits. Many PP1 regulators share a consensus RVXF motif, which docks within a hydrophobic pocket on the surface of the PP1 catalytic subunit. Although these regulatory proteins also possess additional PP1-binding sites, mutations of the RVXF sequence established a key role of this PP1-binding sequence in the function of PP1 regulators. WT PP1alpha, the C-terminal truncated PP1alpha-(1-306), a chimeric PP1alpha containing C-terminal sequences from PP2A, another phosphatase, PP1alpha-(1-306) with the RVXF-binding pocket substitutions L289R, M290K, and C291R, and PP2A were analyzed for their regulation by several mammalian proteins. These studies established that modifications of the RVXF-binding pocket had modest effects on the catalytic activity of PP1, as judged by recognition of substrates and sensitivity to toxins. However, the selected modifications impaired the sensitivity of PP1 to the inhibitor proteins, inhibitor-1 and inhibitor-2. In addition, they impaired the ability of PP1 to bind neurabin-I, the neuronal regulatory subunit, and G(M), the skeletal muscle glycogen-targeting subunit. These data suggested that differences in RVXF interactions with the hydrophobic pocket dictate the affinity of PP1 for cellular regulators. Substitution of a distinct RVXF sequence in inhibitor-1 that enhanced its binding and potency as a PP1 inhibitor emphasized the importance of the RVXF sequence in defining the function of this and other PP1 regulators. Our studies suggest that the diversity of RVXF sequences provides for dynamic physiological regulation of PP1 functions in eukaryotic cells.


Assuntos
Domínio Catalítico , Fosfoproteínas Fosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Dados de Sequência Molecular , Mutação , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/isolamento & purificação , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1
14.
J Biol Chem ; 279(47): 48904-14, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15345721

RESUMO

Inhibitor-1 (I-1) is a selective inhibitor of protein phosphatase-1 (PP1) and regulates several PP1-dependent signaling pathways, including cardiac contractility and regulation of learning and memory. The human I-1 gene has been spliced to generate two alternative mRNAs, termed I-1alpha and I-1beta, encoding polypeptides that differ from I-1 in their C-terminal sequences. Reverse transcription-PCR established that I-1alpha and I-1beta mRNAs are expressed in a developmental and tissue-specific manner. Functional analysis of I-1 in a Saccharomyces cerevisiae strain dependent on human I-1 for viability established that a novel domain encompassing amino acids 77-110 is necessary for PP1 inhibition in yeast. Expression of human I-1 in S. cerevisiae with a partial loss-of-function eukaryotic initiation factor-2alpha (eIF2alpha) kinase (Gcn2p) mutation permitted growth during amino acid starvation, consistent with the inhibition of Glc7p/PP1, the yeast eIF2alpha phosphatase. In contrast, human I-1alpha, which lacks amino acids 83-134, and I-1 with C-terminal deletions were significantly less effective in promoting yeast growth under starvation conditions. These data suggest that C-terminal sequences of I-1 enhance regulation of the eukaryotic eIF2alpha phosphatase. In vitro studies established that C-terminal sequences, deleted in both I-1alpha and I-1beta, enhance PP1 binding and inhibition. Expression of full-length and C-terminally truncated I-1 in HEK293T cells established the importance of the I-1 C terminus in transducing cAMP signals that promote eIF2alpha phosphorylation. This study demonstrates that multiple domains in I-1 target cellular PP1 complexes and establishes I-1 as a cellular regulator of eIF2alpha phosphorylation.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Hormônios/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas/química , Processamento Alternativo , Aminoácidos/química , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Éxons , Deleção de Genes , Glutationa Transferase/metabolismo , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Nucleares , Peptídeos/química , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilase Fosfatase/metabolismo , Fosforilação , Plasmídeos/metabolismo , Isoformas de Proteínas , Proteínas Quinases/química , Proteínas Quinases/genética , Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Distribuição Tecidual , eIF-2 Quinase/metabolismo
15.
EMBO J ; 22(21): 5734-45, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14592972

RESUMO

It has been known for over a decade that inhibition of protein phosphatase 1 (PP1) activity prevents entry into M phase, but the relevant substrate has not been identified. We report here that PP1 is required for dephosphorylation of the Cdc2-directed phosphatase Cdc25 at Ser287 (of Xenopus Cdc25; Ser216 of human Cdc25C), a site that suppresses Cdc25 during interphase. Moreover, PP1 recognizes Cdc25 directly by interacting with a PP1-binding motif in the Cdc25 N-terminus. We have also found that 14-3-3 binding to phospho-Ser287 protects Cdc25 from premature dephosphorylation. Upon entry into M phase, 14-3-3 removal from Cdc25 precedes Ser287 dephosphorylation, suggesting the existence of a phosphatase- independent pathway for 14-3-3 removal from Cdc25. We show here that this dissociation of 14-3-3 from Cdc25 requires the activity of the cyclin-dependent kinase Cdk2, providing a molecular explanation for the previously reported requirement for Cdk2 in promoting mitotic entry. Collectively, our data clarify several steps important for Cdc25 activation and provide new insight into the role of PP1 in Cdc2 activation and mitotic entry.


Assuntos
Mitose/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Fosfatases cdc25/metabolismo , Proteínas 14-3-3 , Animais , Sequência de Bases , Sítios de Ligação , Proteína Quinase CDC2/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinase 2 Dependente de Ciclina , DNA Complementar/genética , Feminino , Técnicas In Vitro , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Proteína Fosfatase 1 , Xenopus , Proteínas de Xenopus , Fosfatases cdc25/química , Fosfatases cdc25/genética
16.
Mol Cell Biol ; 23(4): 1292-303, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12556489

RESUMO

The growth arrest and DNA damage-inducible protein, GADD34, associates with protein phosphatase 1 (PP1) and promotes in vitro dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2, (eIF-2 alpha). In this report, we show that the expression of human GADD34 in cultured cells reversed eIF-2 alpha phosphorylation induced by thapsigargin and tunicamycin, agents that promote protein unfolding in the endoplasmic reticulum (ER). GADD34 expression also reversed eIF-2 alpha phosphorylation induced by okadaic acid but not that induced by another phosphatase inhibitor, calyculin A (CA), which is a result consistent with PP1 being a component of the GADD34-assembled eIF-2 alpha phosphatase. Structure-function studies identified a bipartite C-terminal domain in GADD34 that encompassed a canonical PP1-binding motif, KVRF, and a novel RARA sequence, both of which were required for PP1 binding. N-terminal deletions of GADD34 established that while PP1 binding was necessary, it was not sufficient to promote eIF-2 alpha dephosphorylation in cells. Imaging of green fluorescent protein (GFP)-GADD34 proteins showed that the N-terminal 180 residues directed the localization of GADD34 at the ER and that GADD34 targeted the alpha isoform of PP1 to the ER. These data provide new insights into the mode of action of GADD34 in assembling an ER-associated eIF-2 alpha phosphatase that regulates protein translation in mammalian cells.


Assuntos
Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação , Sítios de Ligação , Proteínas de Ciclo Celular , Divisão Celular/fisiologia , Células Cultivadas , Dano ao DNA/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Toxinas Marinhas , Dados de Sequência Molecular , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação , Proteína Fosfatase 1 , Subunidades Proteicas , Proteínas/efeitos dos fármacos , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Tapsigargina/farmacologia , Tunicamicina/farmacologia
17.
Curr Protoc Mol Biol ; Chapter 18: Unit 18.10, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-18265323

RESUMO

Reversible protein phosphorylation is recognized as a major mechanism regulating the physiology of plant and animal cells. Virtually every biochemical process within eukaryotic cells is controlled by the covalent modification of key regulatory proteins. This in turn dictates the cellular response to a variety of physiological and environmental stimuli; errors in signals transduced by phosphoproteins contribute to many human diseases. Thus, defining protein phosphorylation events, and specifically, the phosphoproteins involved, is crucial for obtaining a better understanding of the physiological events that distinguish normal and diseased states. Protein phosphatase inhibitors are useful when deciphering physiological events regulated by reversible protein phosphorylation but the hormonal stimuli or signaling pathways involved are not known. They are also useful in analyzing the impact of hormones and other physiological stimuli on the function of a specific phosphoprotein. This unit describes protocols for inhibiting cellular phosphorylation activity with okadaic acid, microcystin-LR, and PP2B/calcineurin and a widely utilized strategy for inhibiting protein tyrosine phosphatases.


Assuntos
Ciclosporina/farmacologia , Microcistinas/farmacologia , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Piretrinas/farmacologia , Vanadatos/farmacologia , Animais , Inibidores de Calcineurina , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/enzimologia , Mamíferos , Toxinas Marinhas , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 2/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores
18.
Curr Protoc Protein Sci ; Chapter 13: Unit 13.10, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-18429239

RESUMO

Reversible protein phosphorylation is recognized as a major mechanism regulating the physiology of plant and animal cells. Virtually every biochemical process within eukaryotic cells is controlled by the covalent modification of key regulatory proteins. This in turn dictates the cellular response to a variety of physiological and environmental stimuli; errors in signals transduced by phosphoproteins contribute to many human diseases. Thus, defining protein phosphorylation events, and specifically, the phosphoproteins involved, is crucial for obtaining a better understanding of the physiological events that distinguish normal and diseased states. Protein phosphatase inhibitors are useful when deciphering physiological events regulated by reversible protein phosphorylation but the hormonal stimuli or signaling pathways involved are not known. They are also useful in analyzing the impact of hormones and other physiological stimuli on the function of a specific phosphoprotein. This unit describes protocols for inhibiting the cellular PP1/PP2A activity with okadaic acid, microcystin-LR, and PP2B/calcineurin and a widely utilized strategy for inhibiting protein tyrosine phosphatases.


Assuntos
Fosfoproteínas Fosfatases/antagonistas & inibidores , Calcineurina/metabolismo , Inibidores de Calcineurina , Ciclosporina/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Inseticidas/metabolismo , Toxinas Marinhas , Microcistinas/metabolismo , Ácido Okadáico/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Piretrinas/metabolismo , Vanadatos/metabolismo
19.
J Biol Chem ; 277(48): 46535-43, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12270929

RESUMO

Inhibitor-2 (I-2) bound protein phosphatase-1 (PP1) and several PP1-binding proteins from rat brain extracts, including the actin-binding proteins, neurabin I and neurabin II. Neurabins from rat brain lysates were sedimented by I-2 and its structural homologue, I-4. The central domain of both neurabins bound PP1 and I-2, and mutation of a conserved PP1-binding motif abolished neurabin binding to both proteins. Microcystin-LR, a PP1 inhibitor, also attenuated I-2 binding to neurabins. Immunoprecipitation of neurabin I established its association with PP1 and I-2 in HEK293T cells and suggested that PP1 mediated I-2 binding to neurabins. The C terminus of I-2, although not required for PP1 binding, facilitated PP1 recruitment by neurabins, which also targeted I-2 to polymerized F-actin. Mutations that attenuated PP1 binding to I-2 and neurabin I suggested distinct and overlapping sites for these two proteins on the PP1 catalytic subunit. Immunocytochemistry in epithelial cells and cultured hippocampal neurons showed that endogenous neurabin II and I-2 colocalized at actin-rich structures, consistent with the ability of neurabins to target the PP1.I-2 complex to actin cytoskeleton and regulate cell morphology.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas/metabolismo , Animais , Sequência de Bases , Domínio Catalítico , Células Cultivadas , Proteínas Cromossômicas não Histona , Primers do DNA , Proteínas de Ligação a DNA , Hipocampo/citologia , Hipocampo/metabolismo , Chaperonas de Histonas , Humanos , Imuno-Histoquímica , Toxinas Marinhas , Microcistinas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Ligação Proteica , Proteína Fosfatase 1 , Proteínas/química , Ratos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA