RESUMO
We report a metal free synthetic hydrogel copolymer with affinity and selectivity for His6-tagged peptides and proteins. Small libraries of copolymers incorporating charged and hydrophobic functional groups were screened by an iterative process for His6 peptide affinity. The monomer selection was guided by interactions found in the crystal structure of an anti-His tag antibody-His6 peptide antigen complex. Synthetic copolymers incorporating a phenylalanine-derived monomer were found to exhibit strong affinity for both His6-containing peptides and proteins. The proximity of both aromatic and negatively charged functional groups were important factors for the His6 affinity of hydrogel copolymers. His6 affinity was not compromised by the presence of enzyme cleavage sequences. The His6-copolymer interactions are pH sensitive: the copolymer selectively captured His6 peptides at pH 7.8 while the interactions were substantially weakened at pH 8.6. This provided mild conditions for releasing His6-tagged proteins from the copolymer. Finally, a synthetic copolymer coated chromatographic medium was prepared and applied to the purification of a His6-tagged protein from an E. coli expression system. The results establish that a synthetic copolymer-based affinity medium can function as an effective alternative to immobilized metal ion columns for the purification of His6-tagged proteins.
Assuntos
Escherichia coli , Polímeros , Cromatografia de Afinidade , Escherichia coli/genética , Metais , Proteínas , Proteínas RecombinantesRESUMO
We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280FRGSAQGIEGS290, 368RRPFNIGINNQQ379 and 436FRSGFSNSSVSIIR449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368RRPFNIGINNQQ379. This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865NITIHITDTNNK876, a specific recognition site in insect receptor Bt-R1, to 368RRPFNIGINNQQ379. The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368RRPFNIGINNQQ379. This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.
Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insetos/química , Polímeros/química , Toxinas de Bacillus thuringiensis , Ligantes , Modelos Moleculares , Polímeros/síntese química , Ligação ProteicaRESUMO
Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts.
Assuntos
Nanopartículas/química , Polímeros/química , Engenharia de Proteínas , Fator A de Crescimento do Endotélio Vascular/química , Proliferação de Células , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Toxins delivered by envenomation, secreted by microorganisms, or unintentionally ingested can pose an immediate threat to life. Rapid intervention coupled with the appropriate antidote is required to mitigate the threat. Many antidotes are biological products and their cost, methods of production, potential for eliciting immunogenic responses, the time needed to generate them, and stability issues contribute to their limited availability and effectiveness. These factors exacerbate a world-wide challenge for providing treatment. In this review we evaluate a number of polymer constructs that may serve as alternative antidotes. The range of toxins investigated includes those from sources such as plants, animals and bacteria. The development of polymeric heavy metal sequestrants for use as antidotes to heavy metal poisoning faces similar challenges, thus recent findings in this area have also been included. Two general strategies have emerged for the development of polymeric antidotes. In one, the polymer acts as a scaffold for the presentation of ligands with a known affinity for the toxin. A second strategy is to generate polymers with an intrinsic affinity, and in some cases selectivity, to a range of toxins. Importantly, in vivo efficacy has been demonstrated for each of these strategies, which suggests that these approaches hold promise as an alternative to biological or small molecule based treatments.
Assuntos
Antídotos/uso terapêutico , Intoxicação por Metais Pesados , Intoxicação/tratamento farmacológico , Polímeros/uso terapêutico , Toxinas Biológicas/toxicidade , Animais , HumanosRESUMO
For rational design of advanced polymeric materials, it is critical to establish a clear mechanistic link between the molecular structure of a polymer and the emergent bulk mechanical properties. Despite progress towards this goal, it remains a major challenge to directly correlate the bulk mechanical performance to the nanomechanical properties of individual constituent macromolecules. Here, we show a direct correlation between the single-molecule nanomechanical properties of a biomimetic modular polymer and the mechanical characteristics of the resulting bulk material. The multi-cyclic single-molecule force spectroscopy (SMFS) data enabled quantitative derivation of the asymmetric potential energy profile of individual module rupture and re-folding, in which a steep dissociative pathway accounted for the high plateau modulus, while a shallow associative well explained the energy-dissipative hysteresis and dynamic, adaptive recovery. These results demonstrate the potential for SMFS to serve as a guide for future rational design of advanced multifunctional materials.
Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Polímeros/química , Polímeros/síntese química , Teste de Materiais/métodosRESUMO
Methicillin resistant Staphylococcus aureus (MRSA) is a highly virulent bacterium capable of inflicting severe infections. This pathogen has a long history of developing resistance to antibacterial drugs, and many phenotypes are capable of disabling the host immune response by releasing peptide and protein toxins with the capacity to lyse human polymorphonuclear neutrophils. The peptide phenol-soluble modulin α3 (PSMα3) has been identified as an important toxin released by the most virulent strains of MRSA. A library of polymer nonaparticles was synthesized by precipitation polymerization and screened for their ability to bind and neutralize this toxin. To generate high affinity, monomers were chosen to compliment the functional groups of PSMα3. Nanoparticles incorporating aromatic monomers provided a high affinity for the peptide and were effective at neutralizing its toxicity in vitro.
Assuntos
Antitoxinas , Toxinas Bacterianas/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/química , Nanopartículas/química , Antitoxinas/química , Antitoxinas/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismoRESUMO
In a retrospective study, eleven adult parricidal forensic cases from Southern California are presented. Each case involves the murder of both parents and was referred for forensic evaluation. Common characteristics among the eleven cases are presented. Two case examples illustrate features of recognized adult parricidal subtypes. The findings are compared with studies involving parricide, double-parricide, and extant case law.