Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142284, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719124

RESUMO

Wetland management maintains nitrogen (N) removal capacity in mature and overgrown constructed wetlands (CWs). We evaluated whether CW management by macrophyte harvesting, and subsequent installation of woodchips-based floating beds (WFBs) planted with Glyceria maxima and Filipendula ulmaria improved N removal. In sixteen heavily overgrown experimental CWs, we applied four treatments: i) only macrophyte harvesting, ii) 5% of the harvested-CW surface covered with WFBs, iii) 20% WFBs cover, and iv) a control treatment (heavily overgrown). N removal was determined in all wetlands at nine occasions. Plant biomass accrual, N assimilation, and denitrification genes nirS, nirK, nosZI and nosZII on plant roots and woodchips from WFBs were estimated. Macrophyte harvesting improved N removal of heavily overgrown CWs, whereas subsequent WFB installation only sometimes improved N removal. Mean N removal efficiencies (± standard deviation) overall were 41 ± 15 %, 45 ± 20 %, 46 ± 16 % and 27 ± 8.3 % for treatments i to iv, respectively. Relative biomass production, root length and root surface area for G.maxima (mean ± standard deviation: 234 ± 114 %, 40 ± 6.5 cm, 6308 ± 1059 cm2g-1, respectively) were higher than those for F. ulmaria (63 ± 86 %, 28 ± 12 cm, 3131 ± 535 cm2g-1, respectively) whereas biomass N assimilation was higher for F. ulmaria (1.8 ± 0.9 gNm-2 of WFB) than for G. maxima (1.3 ± 0.5 gNm-2 of WFB). Denitrification gene abundance was higher on plant roots than on woodchips while G. maxima hosted higher root denitrification gene abundance than F. ulmaria. We conclude that macrophyte harvesting improves N removal in heavily overgrown CWs. WFBs installation has the potential to support plant growth and denitrification in surface-flow constructed wetlands. Further studies need to evaluate the long-term effects of macrophyte harvesting and WFB installation on N removal in CWs.


Assuntos
Biomassa , Nitrogênio , Áreas Alagadas , Madeira , Nitrogênio/metabolismo , Desnitrificação , Raízes de Plantas/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 892: 164336, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37236460

RESUMO

Wetlands in agricultural areas mitigate eutrophication by intercepting nutrient transports from land to sea. The role of wetlands for nutrient removal may become even more important in the future because of the expected increase in agricultural runoff due to climate change. Because denitrification is temperature dependent, wetland nitrogen (N) removal usually peaks during the warm summer. However, climate change scenarios for the northern temperate zone predict decreased summer and increased winter flows. Future wetlands may therefore shift towards lower hydraulic loading rate and N load during summer. We hypothesised that low summer N loads would decrease annual wetland N removal and tested this by examining 1.5-3 years of continuous N removal data from created agricultural wetlands in two regions in southern Sweden (East and West) during different periods. West wetlands showed relatively stable hydraulic loads throughout the year, whereas East wetlands had pronounced no-flow periods during summer. We compared East and West wetlands and tested the effects of several variables (e.g., N concentration, N load, hydraulic load, depth, vegetation cover, hydraulic shape) on annual absolute and relative N removal. We found no difference in annual N removal between East and West wetlands, even though summer N loads were lower in East than in West wetlands. A possible explanation is that stagnant water conditions in East wetlands suppressed decomposition of organic matter during summer, making more organic matter available for denitrification during winter. Absolute N removal in all wetlands was best explained by N load and hydraulic shape, whereas relative N removal was best explained by emergent vegetation cover and hydraulic shape. This study highlights the importance of design and location of agricultural wetlands for high N removal, and we conclude that wetlands in a future climate may remove N from agricultural runoff as efficiently as today.


Assuntos
Nitrogênio , Áreas Alagadas , Desnitrificação , Agricultura , Nutrientes
3.
J Environ Manage ; 277: 111391, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049611

RESUMO

Efforts to mitigate greenhouse gas (GHG) emissions are receiving increased attention among governmental and commercial actors. In recent years, the interest in paludiculture, i.e. the use of rewetted peatlands, has grown because of its potential to reduce GHG emissions by stopping soil decomposition. Moreover, cultivating wetland plants on rewetted peatlands for bioenergy production that replaces fossil fuels in the transport sector, can contribute to additional GHG emission reductions. In this study, an analysis of literature data was conducted to obtain data on GHG emissions (CO2 and CH4) and biomass production from rewetted peatlands cultivated with two different wetland plant species: Phragmites australis (Pa) and Typha latifolia (Tl). In addition, a biogas experiment was carried out to investigate the biomethane yield of Pa and Tl biomass, and the reduction of global warming potential (GWP) by using biomethane as vehicle fuel. The results show that peatland rewetting can be an important measure to mitigate the GWP as it reduces GHG emissions from the soil, particularly on a 100-year timescale but also to some extent on a 20-year timescale. More specifically, rewetting of 1 km2 of peatland can result in a GWP reduction corresponding to the emissions from ±2600 average sized petrol cars annually. Growing Pa on rewetted peatlands reduces soil GHG emissions more than growing Tl, but Pa and Tl produced similar amounts of biomass and biomethane per land area. Our study concludes that Pa, because of a more pronounced GWP reduction, is the most suitable wetland plant to cultivate after peatland rewetting.


Assuntos
Gases de Efeito Estufa , Typhaceae , Biocombustíveis , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Solo , Áreas Alagadas
5.
Sci Total Environ ; 646: 1315-1326, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235617

RESUMO

Wetlands in urban areas will be crucial to counteract the effects of climate change, for example, by improving flood protection and regulating local climate. To gain acceptance for larger-scale creation of wetlands, total values must be identified and revealed. Provisioning and regulating ecosystem services can be described as the quantitative effect, but cultural ecosystem services require other assessments. This study sought to determine whether peri-urban and urban wetland areas contribute to the well-being and quality of life of nearby residents, and to capture their value relative to two other types of green areas (i.e., parks and urban forests). A postal questionnaire survey, based on validated environmental psychology instruments, was distributed to residents in three municipalities with wetland areas of different structures and locations. In these municipalities, respondents (n = 474; response rate = 40%) reported that the wetland area contributed to several quality-of-life aspects, such as encountering nature and experiencing beauty. The areas also facilitated activities that support well-being, were perceived to have high restorative qualities, and evoked positive affective responses. All wetland areas were rated high on most of the measured concepts, but their value relative to other green areas differed possibly depending on the accessibility of the wetland and the availability of other green areas. The location and extent to which the wetland area was integrated in the residential area determined what quality-of-life aspects were most satisfied. Wetland areas can be ascribed cultural ecosystem service values based on how residents perceive their contribution to their quality of life. These values can be added to those of provisioning and regulating ecosystem services, forming the basis for planning urban environments.


Assuntos
Conservação dos Recursos Naturais , Qualidade de Vida , Áreas Alagadas , Cidades , Mudança Climática , Ecossistema , Humanos
6.
Sci Total Environ ; 476-477: 29-37, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24448029

RESUMO

Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.


Assuntos
Antibacterianos/análise , Recuperação e Remediação Ambiental/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Microbiologia da Água , Poluentes Químicos da Água/análise , Áreas Alagadas , Resistência Microbiana a Medicamentos/genética , Suécia , Águas Residuárias/microbiologia
7.
J Environ Manage ; 113: 271-8, 2012 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-23064246

RESUMO

Eutrophication of the Baltic Sea has in Sweden led to the initiation of government schemes aiming to increase wetland areas in agricultural regions and thereby reduce nutrient transport to the sea. Landowners play a significant role as providers of this ecosystem service and are currently offered subsidies to cover their costs for constructing and maintaining wetlands. We undertook a grounded theory study, in which landowners were interviewed, aiming at identifying landowners' incentives for constructing wetlands on their land. The study showed that adequate subsidies, additional services that the wetland could provide to the landowner, local environmental benefits, sufficient knowledge, and peers' good experiences could encourage landowners to construct wetlands. Perceived hindrances were burdensome management, deficient knowledge, time-consuming application procedures and unclear effectiveness of nutrient reduction. The main reason for not creating a wetland, however, was that the land was classified as productive by the landowner, i.e., suitable for food production. Current schemes are directed toward landowners as individuals and based on subsidies to cover costs. We propose that landowners instead are approached as ecosystem service entrepreneurs and contracted after a tendering process based on nutrient reduction effects. This would lead to new definitions of production and may stimulate improved design and placement of wetlands.


Assuntos
Agricultura , Motivação , Áreas Alagadas , Ecossistema , Suécia
9.
Oecologia ; 108(3): 534-541, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28307871

RESUMO

Food chain theory provides explicit predictions for equilibrium biomasses among trophic levels in food chains of different lengths. Empirical studies on freshwater benthic food chains have typically been performed on chains with up to three levels and in field experiments with limited spatial and temporal scale. Here we use a "natural snapshot experiment" approach to study equilibrium biomass and abundance among trophic levels in natural ponds differing only with respect to fish assemblage structure. Forty-four ponds were surveyed for their densityand biomass of fish, snails and periphyton. Ponds were divided into three categories based on fish assemblage: ponds with no fish (two trophic levels), ponds with molluscivorous fish (three trophic levels) and ponds that also had piscivorous fish (four trophic levels). Ponds without fish had a high density and biomass of snails and a low biomass of periphyton, whereas snails were scarce and periphyton biomass was high in ponds with molluscivorous fish. In the presence of piscivores, molluscivore populations consisted of low numbers of large individuals. Snail assemblages in piscivore ponds were characterised by relativelyhigh densities of small-bodied detritivorous species and periphyton biomass was not significantlydifferent from ponds with three trophic levels. Thus, predictions from classic food chain theory were upheld in ponds with up to three trophic levels. In ponds with four trophic levels, however, there was a decoupling of the trophic cascade at the piscivore-molluscivore level. Gape-limited piscivory, predation on snails by molluscivores that have reached an absolute size refuge from predation, and changes in food preferences of the dominant snails are suggested to explain the observed patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA