Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 830: 154715, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337864

RESUMO

The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC-HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10-37 °C. "Candidatus Brocadia" appeared to be the dominant organism in all but two laboratory enrichments of "Ca. Scalindua" and "Ca. Kuenenia". At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. "Ca. Scalindua" and "Ca. Kuenenia" had distinct profile of ladderane lipids compared to "Ca. Brocadia" biomasses with potential implications for adaptability to low temperatures. "Ca. Brocadia" membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for "Ca. Scalindua" at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of "Ca. Scalindua" in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments.


Assuntos
Oxidação Anaeróbia da Amônia , Bactérias , Anaerobiose , Hibridização in Situ Fluorescente , Lipídeos de Membrana , Oxirredução , RNA Ribossômico 16S/genética , Temperatura
2.
J Hazard Mater ; 424(Pt C): 127407, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34629195

RESUMO

Antibiotic resistance (AR) is a global problem requiring international cooperation and coordinated action. Global monitoring must rely on methods available and comparable across nations to quantify AR occurrence and identify sources and reservoirs, as well as paths of AR dissemination. Numerous analytical tools that are gaining relevance in microbiology, have the potential to be applied to AR research. This review summarizes the state of the art of AR monitoring methods, considering distinct needs, objectives and available resources. Based on the overview of distinct approaches that are used or can be adapted to monitor AR, it is discussed the potential to establish reliable and useful monitoring schemes that can be implemented in distinct contexts. This discussion places the environmental monitoring within the One-Health approach, where two types of risk, dissemination across distinct environmental compartments, and transmission to humans, must be considered. The plethora of methodological approaches to monitor AR and the variable features of the monitored sites challenge the capacity of the scientific community and policy makers to reach a common understanding. However, the dialogue between different methods and the production of action-oriented data is a priority. The review aims to warm up this discussion.


Assuntos
Saúde Única , Águas Residuárias , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Genes Bacterianos , Humanos
3.
Biotechnol Bioeng ; 117(5): 1281-1293, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034763

RESUMO

Lactic acid-producing bacteria are important in many fermentations, such as the production of biobased plastics. Insight in the competitive advantage of lactic acid bacteria over other fermentative bacteria in a mixed culture enables ecology-based process design and can aid the development of sustainable and energy-efficient bioprocesses. Here we demonstrate the enrichment of lactic acid bacteria in a controlled sequencing batch bioreactor environment using a glucose-based medium supplemented with peptides and B vitamins. A mineral medium enrichment operated in parallel was dominated by Ethanoligenens species and fermented glucose to acetate, butyrate and hydrogen. The complex medium enrichment was populated by Lactococcus, Lactobacillus and Megasphaera species and showed a product spectrum of acetate, ethanol, propionate, butyrate and valerate. An intermediate peak of lactate was observed, showing the simultaneous production and consumption of lactate, which is of concern for lactic acid production purposes. This study underlines that the competitive advantage for lactic acid-producing bacteria primarily lies in their ability to attain a high biomass specific uptake rate of glucose, which was two times higher for the complex medium enrichment when compared to the mineral medium enrichment. The competitive advantage of lactic acid production in rich media can be explained using a resource allocation theory for microbial growth processes.


Assuntos
Anaerobiose/fisiologia , Lactobacillales , Reatores Biológicos/microbiologia , Técnicas de Cultura de Células , Fermentação/fisiologia , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Lactobacillales/fisiologia
4.
Water Res ; 85: 158-66, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318648

RESUMO

The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that contain XS, the selection pressure should be significantly reduced.


Assuntos
Compostos Orgânicos/metabolismo , Material Particulado/química , Purificação da Água/métodos , Compostos de Amônio/química , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos , Cinética , Fósforo/química , Esgotos/química , Amido/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA