Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
3.
Front Microbiol ; 11: 590061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240246

RESUMO

Chlordecone (Kepone®) and γ-hexachlorocyclohexane (γ-HCH or lindane) have been used for decades in the French West Indies (FWI) resulting in long-term soil and water pollution. In a previous work, we have identified a new Citrobacter species (sp.86) that is able to transform chlordecone into numerous products under anaerobic conditions. No homologs to known reductive dehalogenases or other candidate genes were found in the genome sequence of Citrobacter sp.86. However, a complete anaerobic pathway for cobalamin biosynthesis was identified. In this study, we investigated whether cobalamin or intermediates of cobalamin biosynthesis was required for chlordecone microbiological transformation. For this purpose, we constructed a set of four Citrobacter sp.86 mutant strains defective in several genes belonging to the anaerobic cobalamin biosynthesis pathway. We monitored chlordecone and its transformation products (TPs) during long-term incubation in liquid cultures under anaerobic conditions. Chlordecone TPs were detected in the case of cobalamin-producing Citrobacter sp.86 wild-type strain but also in the case of mutants able to produce corrinoids devoid of lower ligand. In contrast, mutants unable to insert the cobalt atom in precorrin-2 did not induce any transformation of chlordecone. In addition, it was found that lindane, previously shown to be anaerobically transformed by Citrobacter freundii without evidence of a mechanism, was also degraded in the presence of the wild-type strain of Citrobacter sp.86. The lindane degradation abilities of the various Citrobacter sp.86 mutant strains paralleled chlordecone transformation. The present study shows the involvement of cobalt-containing corrinoids in the microbial degradation of chlorinated compounds with different chemical structures. Their increased production in contaminated environments could accelerate the decontamination processes.

4.
An Acad Bras Cienc ; 91(suppl 3): e20190252, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31365611

RESUMO

The various descriptors of biochemical diversity and an evaluation of its status of knowledge are briefly outlined. Using a few examples from in house research projects, I illustrate strategies used to increase this knowledge. Because bacteria represent an extremely diverse domain of life and carry out the widest known range of biochemical transformations, this mini-review focusses on bacteria.


Assuntos
Bactérias , Bactérias/química , Bactérias/genética , Bactérias/metabolismo
5.
Environ Sci Technol ; 53(11): 6133-6143, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31082212

RESUMO

Production and use of the insecticide chlordecone has caused long-term environmental pollution in the James River area and the French West Indies (FWI) that has resulted in acute human-health problems and a social crisis. High levels of chlordecone in FWI soils, even after its ban decades ago, and the absence of detection of transformation products (TPs), have suggested that chlordecone is virtually nonbiodegradable in the environment. Here, we investigated laboratory biodegradation, consisting of bacterial liquid cultures and microcosms inoculated with FWI soils, using a dual nontargeted GC-MS and LC-HRMS approach. In addition to previously reported, partly characterized hydrochlordecones and polychloroindenes (families A and B), we discovered 14 new chlordecone TPs, assigned to four families (B, C, D, and E). Organic synthesis and NMR analyses allowed us to achieve the complete structural elucidation of 19 TPs. Members of TP families A, B, C, and E were detected in soil, sediment, and water samples from Martinique and include 17 TPs not initially found in commercial chlordecone formulations. 2,4,5,6,7-Pentachloroindene was the most prominent TP, with levels similar to those of chlordecone. Overall, our results clearly show that chlordecone pollution extends beyond the parent chlordecone molecule and includes a considerable number of previously undetected TPs. Structural diversity of the identified TPs illustrates the complexity of chlordecone degradation in the environment and raises the possibility of extensive worldwide pollution of soil and aquatic ecosystems by chlordecone TPs.


Assuntos
Clordecona , Inseticidas , Musa , Poluentes do Solo , Ecossistema , Humanos , Martinica , Índias Ocidentais
7.
Nat Chem Biol ; 13(8): 858-866, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28581482

RESUMO

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.


Assuntos
Acetiltransferases/metabolismo , Evolução Molecular , Metionina/biossíntese , Acinetobacter/enzimologia , Escherichia coli/enzimologia
8.
ACS Synth Biol ; 6(8): 1520-1533, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28467058

RESUMO

One-carbon metabolism is an ubiquitous metabolic pathway that encompasses the reactions transferring formyl-, hydroxymethyl- and methyl-groups bound to tetrahydrofolate for the synthesis of purine nucleotides, thymidylate, methionine and dehydropantoate, the precursor of coenzyme A. An alternative cyclic pathway was designed that substitutes 4-hydroxy-2-oxobutanoic acid (HOB), a compound absent from known metabolism, for the amino acids serine and glycine as one-carbon donors. It involves two novel reactions, the transamination of l-homoserine and the transfer of a one-carbon unit from HOB to tetrahydrofolate releasing pyruvate as coproduct. Since canonical reactions regenerate l-homoserine from pyruvate by carboxylation and subsequent reduction, every one-carbon moiety made available for anabolic reactions originates from CO2. The HOB-dependent pathway was established in an Escherichia coli auxotroph selected for prototrophy using long-term cultivation protocols. Genetic, metabolic and biochemical evidence support the emergence of a functional HOB-dependent one-carbon pathway achieved with the recruitment of the two enzymes l-homoserine transaminase and HOB-hydroxymethyltransferase and of HOB as an essential metabolic intermediate. Escherichia coli biochemical reprogramming was achieved by minimally altering canonical metabolism and leveraging on natural selection mechanisms, thereby launching the resulting strain on an evolutionary trajectory diverging from all known extant species.


Assuntos
Acetoacetatos/metabolismo , Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glicina/genética , Glicina/metabolismo , Ácido Pirúvico/metabolismo , Serina/genética , Serina/metabolismo , Biologia Sintética/métodos
9.
Med Sci (Paris) ; 32(11): 937-943, 2016 Nov.
Artigo em Francês | MEDLINE | ID: mdl-28008833

RESUMO

Major technical advances were introduced in the study of microflora and microbial communities in the nineties. These are essentially analytical approaches conducted as frequently by brute force. What conclusions can be drawn from these analyses twenty years later? In terms of microbial compositions, monitoring and diagnosis, the results are impressive. But what do all these microorganisms do? What are the factors behind their associations and their maintenance? Gene inventories are approaching completion; they allow us to deepen some physiological processes but do not say much more. We have even begun to manipulate microbiota. But as often in the dialectic between theory and practice, it works but we are far from understanding how!


Assuntos
Metagenômica/métodos , Microbiota/genética , Animais , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenoma/fisiologia , Microbiota/fisiologia , RNA Ribossômico/análise , RNA Ribossômico/genética
10.
C R Biol ; 339(7-8): 231-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27263360

RESUMO

A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics.


Assuntos
Genômica/história , Animais , Biologia Computacional , DNA/genética , Evolução Molecular , Genoma , História do Século XX , História do Século XXI , Humanos
11.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26863193

RESUMO

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Assuntos
Organismos Aquáticos/metabolismo , Carbono/metabolismo , Ecossistema , Plâncton/metabolismo , Água do Mar/química , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Clorofila/metabolismo , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/metabolismo , Expedições , Genes Bacterianos , Genes Virais , Geografia , Oceanos e Mares , Fotossíntese , Plâncton/genética , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/parasitologia , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Synechococcus/virologia
12.
Front Microbiol ; 7: 2025, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066351

RESUMO

Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C10Cl10O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 µg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1) as well as two minor metabolites C10Cl9HO (named A1) and C9Cl4H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.

13.
Science ; 348(6237): 1261359, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999513

RESUMO

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.


Assuntos
Microbiota/genética , Plâncton/classificação , Água do Mar/microbiologia , Bases de Dados Genéticas , Ecossistema , Trato Gastrointestinal/microbiologia , Variação Genética , Humanos , Metagenoma , Oceanos e Mares , Plâncton/genética , Plâncton/isolamento & purificação
14.
Science ; 348(6237): 1262073, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999517

RESUMO

Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.


Assuntos
Cadeia Alimentar , Plâncton/classificação , Plâncton/fisiologia , Simbiose , Animais , Especificidade de Hospedeiro , Oceanos e Mares , Filogenia , Platelmintos/classificação , Platelmintos/fisiologia , Luz Solar , Vírus/classificação
15.
Microb Ecol ; 70(1): 154-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25592635

RESUMO

To gain an in-depth insight into the diversity and the distribution of genes under the particular evolutionary pressure of an arsenic-rich acid mine drainage (AMD), the genes involved in bacterial arsenic detoxification (arsB, ACR3) and arsenite oxidation (aioA) were investigated in sediment from Carnoulès (France), in parallel to the diversity and global distribution of the metabolically active bacteria. The metabolically active bacteria were affiliated mainly to AMD specialists, i.e., organisms detected in or isolated from AMDs throughout the world. They included mainly Acidobacteria and the non-affiliated "Candidatus Fodinabacter communificans," as well as Thiomonas and Acidithiobacillus spp., Actinobacteria, and unclassified Gammaproteobacteria. The distribution range of these organisms suggested that they show niche conservatism. Sixteen types of deduced protein sequences of arsenite transporters (5 ArsB and 11 Acr3p) were detected, whereas a single type of arsenite oxidase (AioA) was found. Our data suggested that at Carnoulès, the aioA gene was more recent than those encoding arsenite transporters and subjected to a different molecular evolution. In contrast to the 16S ribosomal RNA (16S rRNA) genes associated with AMD environments worldwide, the functional genes aioA, ACR3, and to a lesser extent arsB, were either novel or specific to Carnoulès, raising the question as to whether these functional genes are specific to high concentrations of arsenic, AMD-specific, or site-specific.


Assuntos
Acidobacteria/genética , Arsênio/análise , Biodiversidade , Mineração , Microbiologia do Solo , Poluentes do Solo/análise , ATPases Transportadoras de Arsenito/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , França , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
16.
PLoS Genet ; 10(11): e1004773, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393313

RESUMO

Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.


Assuntos
Clostridium/enzimologia , Enzimas/genética , Plantas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo , Celulose/genética , Celulose/metabolismo , Clonagem Molecular , Enzimas/isolamento & purificação , Enzimas/metabolismo , Fermentação , Glucose/metabolismo , Humanos , Análise de Sequência de RNA , Xilose/genética , Xilose/metabolismo
17.
Metabolomics ; 10(6): 1223-1238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374488

RESUMO

Expansive knowledge of bacterial metabolism has been gained from genome sequencing output, but the high proportion of genes lacking a proper functional annotation in a given genome still impedes the accurate prediction of the metabolism of a cell. To access to a more global view of the functioning of the soil bacterium Acinetobacter baylyi ADP1, we adopted a multi 'omics' approach. Application of RNA-seq transcriptomics and LC/MS-based metabolomics, along with the systematic phenotyping of the complete collection of single-gene deletion mutants of A. baylyi ADP1 made possible to interrogate on the metabolic perturbations encountered by the bacterium upon a biotic change. Shifting the sole carbon source from succinate to quinate elicited in the cell not only a specific transcriptional response, necessary to catabolize the new carbon source, but also a major reorganization of the transcription pattern. Here, the expression of more than 12 % of the total number of genes was affected, most of them being of unknown function. These perturbations were ultimately reflected in the metabolome, in which the concentration of about 50 % of the LC/MS-detected metabolites was impacted. And the differential regulation of many genes of unknown function is probably related to the synthesis of the numerous unidentified compounds that were present exclusively in quinate-grown cells. Together, these data suggest that A. baylyi ADP1 metabolism involves unsuspected enzymatic reactions that await discovery.

18.
Nat Chem Biol ; 10(1): 42-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240508

RESUMO

Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as ß-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape.


Assuntos
Enzimas/metabolismo , Enzimas/química , Conformação Proteica
19.
Nature ; 500(7463): 453-7, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23873043

RESUMO

Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.


Assuntos
Evolução Biológica , Conversão Gênica/genética , Genoma/genética , Reprodução Assexuada/genética , Rotíferos/genética , Animais , Transferência Genética Horizontal/genética , Genômica , Meiose/genética , Modelos Biológicos , Tetraploidia
20.
Nat Commun ; 3: 1137, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23072807

RESUMO

High-quality annotation of microsporidian genomes is essential for understanding the biological processes that govern the development of these parasites. Here we present an improved structural annotation method using transcriptional DNA signals. We apply this method to re-annotate four previously annotated genomes, which allow us to detect annotation errors and identify a significant number of unpredicted genes. We then annotate the newly sequenced genome of Anncaliia algerae. A comparative genomic analysis of A. algerae permits the identification of not only microsporidian core genes, but also potentially highly expressed genes encoding membrane-associated proteins, which represent good candidates involved in the spore architecture, the invasion process and the microsporidian-host relationships. Furthermore, we find that the ten-fold variation in microsporidian genome sizes is not due to gene number, size or complexity, but instead stems from the presence of transposable elements. Such elements, along with kinase regulatory pathways and specific transporters, appear to be key factors in microsporidian adaptive processes.


Assuntos
Genoma Fúngico/genética , Microsporídios/genética , Anotação de Sequência Molecular , Transcrição Gênica , Sequência Conservada/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genômica , Fases de Leitura Aberta/genética , Fosfotransferases/metabolismo , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA