Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 17(9): 1514-1527, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36961872

RESUMO

INTRODUCTION: Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS: UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS: Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION: The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.

2.
Hepatol Commun ; 6(3): 576-592, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951136

RESUMO

AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Regeneração Hepática , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Biomarcadores , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Interleucina-6 , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Transdução de Sinais , Receptor Tirosina Quinase Axl
4.
Virchows Arch ; 476(3): 465-468, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31616980

RESUMO

Various topographically heterogeneous, histologically related groups of basaloid tumours are characterized by ghost cell differentiation with associated CTNNB1 mutations and nuclear ß-catenin expression. We describe the unique case of a malignant tumour with ghost cell differentiation in the floor of the mouth, in which clinical, radiological, histological, immunohistological and molecular data altogether strongly indicate classification as a new type of salivary gland carcinoma.


Assuntos
Carcinoma/patologia , Neoplasias Bucais/patologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA