Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712252

RESUMO

The initial objective of this study was to shed light on the evolution of small DNA tumor viruses by analyzing de novo assemblies of publicly available deep sequencing datasets. The survey generated a searchable database of contig snapshots representing more than 100,000 Sequence Read Archive records. Using modern structure-aware search tools, we iteratively broadened the search to include an increasingly wide range of other virus families. The analysis revealed a surprisingly diverse range of chimeras involving different virus groups. In some instances, genes resembling known DNA-replication modules or known virion protein operons were paired with unrecognizable sequences that structural predictions suggest may represent previously unknown replicases and novel virion architectures. Discrete clades of an emerging group called adintoviruses were discovered in datasets representing humans and other primates. As a proof of concept, we show that the contig database is also useful for discovering RNA viruses and candidate archaeal phages. The ancillary searches revealed additional examples of chimerization between different virus groups. The observations support a gene-centric taxonomic framework that should be useful for future virus-hunting efforts.

2.
J Physiol ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761133

RESUMO

Hypoxia-inducible factor (HIF)-1α is continuously synthesized and degraded in normoxia. During hypoxia, HIF1α stabilization restricts cellular/mitochondrial oxygen utilization. Cellular stressors can stabilize HIF1α even during normoxia. However, less is known about HIF1α function(s) and sex-specific effects during normoxia in the basal state. Since skeletal muscle is the largest protein store in mammals and protein homeostasis has high energy demands, we determined HIF1α function at baseline during normoxia in skeletal muscle. Untargeted multiomics data analyses were followed by experimental validation in differentiated murine myotubes with loss/gain of function and skeletal muscle from mice without/with post-natal muscle-specific Hif1a deletion (Hif1amsd). Mitochondrial oxygen consumption studies using substrate, uncoupler, inhibitor, titration protocols; targeted metabolite quantification by gas chromatography-mass spectrometry; and post-mitotic senescence markers using biochemical assays were performed. Multiomics analyses showed enrichment in mitochondrial and cell cycle regulatory pathways in Hif1a deleted cells/tissue. Experimentally, mitochondrial oxidative functions and ATP content were higher with less mitochondrial free radical generation with Hif1a deletion. Deletion of Hif1a also resulted in higher concentrations of TCA cycle intermediates and HIF2α proteins in myotubes. Overall responses to Hif1amsd were similar in male and female mice, but changes in complex II function, maximum respiration, Sirt3 and HIF1ß protein expression and muscle fibre diameter were sex-dependent. Adaptive responses to hypoxia are mediated by stabilization of constantly synthesized HIF1α. Despite rapid degradation, the presence of HIF1α during normoxia contributes to lower mitochondrial oxidative efficiency and greater post-mitotic senescence in skeletal muscle. In vivo responses to HIF1α in skeletal muscle were differentially impacted by sex. KEY POINTS: Hypoxia-inducible factor -1α (HIF1α), a critical transcription factor, undergoes continuous synthesis and proteolysis, enabling rapid adaptive responses to hypoxia by reducing mitochondrial oxygen consumption. In mammals, skeletal muscle is the largest protein store which is determined by a balance between protein synthesis and breakdown and is sensitive to mitochondrial oxidative function. To investigate the functional consequences of transient HIF1α expression during normoxia in the basal state, myotubes and skeletal muscle from male and female mice with HIF1α knockout were studied using complementary multiomics, biochemical and metabolite assays. HIF1α knockout altered the electron transport chain, mitochondrial oxidative function, signalling molecules for protein homeostasis, and post-mitotic senescence markers, some of which were differentially impacted by sex. The cost of rapid adaptive responses mediated by HIF1α is lower mitochondrial oxidative efficiency and post-mitotic senescence during normoxia.

3.
BMC Pulm Med ; 24(1): 186, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632546

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder with systemic consequences that can cause a muscle loss phenotype (MLP), which is characterized by the loss of muscle mass, muscle strength, or loss of both muscle and fat mass. There are limited data comparing the individual traits of MLP with clinical outcomes in a large unbiased cohort of COPD patients. Our aim was to determine the proportion of patients who met criteria for MLP in an unbiased sample of COPD patients at the population-level. We also determined if specific MLP features were associated with all-cause and COPD-related mortality. METHODS: A retrospective population-based cohort analysis of the UK Biobank was performed. COPD was defined by a FEV1/FVC ratio < 0.7, physician established diagnosis of COPD, or those with a COPD-related hospitalization before baseline assessment. MLP included one or more of the following: 1) Low fat-free mass index (FFMI) on bioelectric impedance analysis (BIA) or 2) Appendicular skeletal muscle index (ASMI) on BIA, 3) Low muscle strength defined by handgrip strength (HGS), or 4) Low muscle and fat mass based on body mass index (BMI). Cox regression was used to determine the association between MLP and all-cause or COPD-related mortality. All models were adjusted for sex, age at assessment, ethnicity, BMI, alcohol use, smoking status, prior cancer diagnosis and FEV1/FVC ratio. RESULTS: There were 55,782 subjects (56% male) with COPD followed for a median of 70.1 months with a mean(± SD) age at assessment of 59 ± 7.5 years, and FEV1% of 79.2 ± 18.5. Most subjects had mild (50.4%) or moderate (42.8%) COPD. Many patients had evidence of a MLP, which was present in 53.4% of COPD patients (34% by ASMI, 26% by HGS). Of the 5,608 deaths in patients diagnosed with COPD, 907 were COPD-related. After multivariate adjustment, COPD subjects with MLP had a 30% higher hazard-ratio for all-cause death and 70% higher hazard-ratio for COPD-related death. CONCLUSIONS: Evidence of MLP is common in a large population-based cohort of COPD and is associated with higher risk for all-cause and COPD-related mortality.


Assuntos
Força da Mão , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Feminino , Estudos Retrospectivos , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Músculo Esquelético , Fenótipo
4.
Elife ; 122024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648183

RESUMO

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.


Assuntos
Aciltransferases , Homeostase , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Lisossomos , Proteínas de Membrana , Animais , Humanos , Masculino , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/genética , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
JCI Insight ; 9(9)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573776

RESUMO

Diagnostic challenges continue to impede development of effective therapies for successful management of alcohol-associated hepatitis (AH), creating an unmet need to identify noninvasive biomarkers for AH. In murine models, complement contributes to ethanol-induced liver injury. Therefore, we hypothesized that complement proteins could be rational diagnostic/prognostic biomarkers in AH. Here, we performed a comparative analysis of data derived from human hepatic and serum proteome to identify and characterize complement protein signatures in severe AH (sAH). The quantity of multiple complement proteins was perturbed in liver and serum proteome of patients with sAH. Multiple complement proteins differentiated patients with sAH from those with alcohol cirrhosis (AC) or alcohol use disorder (AUD) and healthy controls (HCs). Serum collectin 11 and C1q binding protein were strongly associated with sAH and exhibited good discriminatory performance among patients with sAH, AC, or AUD and HCs. Furthermore, complement component receptor 1-like protein was negatively associated with pro-inflammatory cytokines. Additionally, lower serum MBL associated serine protease 1 and coagulation factor II independently predicted 90-day mortality. In summary, meta-analysis of proteomic profiles from liver and circulation revealed complement protein signatures of sAH, highlighting a complex perturbation of complement and identifying potential diagnostic and prognostic biomarkers for patients with sAH.


Assuntos
Biomarcadores , Proteínas do Sistema Complemento , Hepatite Alcoólica , Proteômica , Humanos , Hepatite Alcoólica/sangue , Hepatite Alcoólica/mortalidade , Hepatite Alcoólica/diagnóstico , Proteômica/métodos , Masculino , Feminino , Proteínas do Sistema Complemento/metabolismo , Biomarcadores/sangue , Pessoa de Meia-Idade , Adulto , Fígado/metabolismo , Fígado/patologia , Alcoolismo/sangue , Alcoolismo/complicações , Proteoma/metabolismo , Prognóstico , Idoso
6.
Contemp Clin Trials ; 138: 107437, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215876

RESUMO

BACKGROUND: Recruitment and retention are critical in clinical studies but there are limited objective metrics of trial performance. We tested if development of trial performance metrics will allow for objective evaluation of study quality. Performance metrics were developed using data from the observational cohort (OBS) and randomized clinical trial (RCT) arms of the prospective Alcoholic Hepatitis Network. METHODS: Yield-rate (%YR; eligible/screened), recruitment index (RI; mean recruitment time/patient), completion index (CI; average number of days to complete the follow-up/patient), and protocol adherence index (AI; average number of deviations/subject recruited) were determined. RESULTS: 2250 patients (1168 for OBS; 1082 for RCT) were screened across 8 sites. Recruitment in the RCT (57% target) was similar to that in the OBS (59% target). Of those screened, 743 (63.6%) subjects in the OBS and 147 (13.6%) subjects in the RCT were enrolled in the study. In OBS study, 253 (34.1%) subjects, and in the RCT, 68 (46.3%) subjects, completed the study or reached a censoring event. Across all sites (range), YR for OBS was 63.6% (41.3-98.3%) and for RCT was 13.6% (5.5-92.6%); RI for OBS was 1.66 (8.79-19.85) and for RCT was 4.05 (19.76-36.43); CI for OBS was 4.87 (22.6-118.3) and for RCT was 8.75 (27.27-161.5); and AR for OBS was 0.56 (0.08-1.04) and for RCT was 1.55 (0.39-3.21. Factors related to participants, research design, study team, and research sponsors contributed to lower performance metrics. CONCLUSIONS: Objective measures of clinical trial performance allow for strategies to enhance study quality and development of site-specific improvement plans. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT4072822 NCT03850899.

7.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 98-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193831

RESUMO

BACKGROUND: Hospitalization and mortality in patients with alcohol-associated hepatitis (AH), a severe form of liver disease, continue to increase over time. Given the severity of the illness, most hospitalized patients with AH are admitted from the emergency department (ED). However, there are no data on ED utilization by patients with AH. Thus, the Nationwide Emergency Department Sample (NEDS) dataset was analyzed to determine the ED utilization for AH. METHODS: Temporal trends (2016-2019) and outcomes of ED visits for AH were determined. Primary or secondary AH diagnoses were based on coding priority. Numbers of patients evaluated in the ED, severity of disease, complications of liver disease, and discharge disposition were analyzed. Crude and adjusted rates were examined, and temporal trends evaluated using logistic regression with orthogonal polynomial contrasts for each year. RESULTS: There were 466,014,370 ED visits during 2016-2019, of which 448,984 (0.096%) were for AH, 85.0% of which required hospitalization. The rate of visits for AH (primary and secondary) between 2016 and 2019 increased from 85 to 106.8/100,000 ED visits. The rate of secondary AH increased more than the rate of primary AH (from 68.6 to 86.5 vs. from 16.4 to 20.3/100,000 ED visits). Patients aged 45-64 years had the highest rate of ED visits for AH, which decreased during the study period, while the rate of ED visits for AH increased in those aged 25-44 years (from 38.5% to 42.9%). The severity of disease (ascites, hepatic encephalopathy, and acute kidney injury) also increased over time. Medicaid and private insurance were the most common payors for patients seeking care in the ED for AH. CONCLUSIONS: Temporal trends show an overall increase in ED utilization rates for AH, more patients requiring hospitalization, and an increase in the proportion of younger patients presenting to the ED with AH.

9.
Gut Liver ; 18(2): 201-208, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37905424

RESUMO

Electronic health records (EHRs) have been increasingly adopted in clinical practices across the United States, providing a primary source of data for clinical research, particularly observational cohort studies. EHRs are a high-yield, low-maintenance source of longitudinal real-world data for large patient populations and provide a wealth of information and clinical contexts that are useful for clinical research and translation into practice. Despite these strengths, it is important to recognize the multiple limitations and challenges related to the use of EHR data in clinical research. Missing data are a major source of error and biases and can affect the representativeness of the cohort of interest, as well as the accuracy of the outcomes and exposures. Here, we aim to provide a critical understanding of the types of data available in EHRs and describe the impact of data heterogeneity, quality, and generalizability, which should be evaluated prior to and during the analysis of EHR data. We also identify challenges pertaining to data quality, including errors and biases, and examine potential sources of such biases and errors. Finally, we discuss approaches to mitigate and remediate these limitations. A proactive approach to addressing these issues can help ensure the integrity and quality of EHR data and the appropriateness of their use in clinical studies.


Assuntos
Análise de Dados , Registros Eletrônicos de Saúde , Humanos , Estados Unidos , Estudos de Coortes
10.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37808828

RESUMO

Several recent genome-wide association studies (GWAS) have identified single nucleotide polymorphism (SNPs) near the gene encoding membrane-bound O -acyltransferase 7 ( MBOAT7 ) that is associated with advanced liver diseases. In fact, a common MBOAT7 variant (rs641738), which is associated with reduced MBOAT7 expression, confers increased susceptibility to non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis in those chronically infected with hepatitis viruses B and C. The MBOAT7 gene encodes a lysophosphatidylinositol (LPI) acyltransferase enzyme that produces the most abundant form of phosphatidylinositol 38:4 (PI 18:0/20:4). Although these recent genetic studies clearly implicate MBOAT7 function in liver disease progression, the mechanism(s) by which MBOAT7-driven LPI acylation regulates liver disease is currently unknown. Previously we showed that antisense oligonucleotide (ASO)-mediated knockdown of Mboat7 promoted non-alcoholic fatty liver disease (NAFLD) in mice (Helsley et al., 2019). Here, we provide mechanistic insights into how MBOAT7 loss of function promotes alcohol-associated liver disease (ALD). In agreement with GWAS studies, we find that circulating levels of metabolic product of MBOAT7 (PI 38:4) are significantly reduced in heavy drinkers compared to age-matched healthy controls. Hepatocyte specific genetic deletion ( Mboat7 HSKO ), but not myeloid-specific deletion ( Mboat7 MSKO ), of Mboat7 in mice results in enhanced ethanol-induced hepatic steatosis and high concentrations of plasma alanine aminotransferase (ALT). Given MBOAT7 is a lipid metabolic enzyme, we performed comprehensive lipidomic profiling of the liver and identified a striking reorganization of the hepatic lipidome upon ethanol feeding in Mboat7 HSKO mice. Specifically, we observed large increases in the levels of endosomal/lysosomal lipids including bis(monoacylglycero)phosphates (BMP) and phosphatidylglycerols (PGs) in ethanol-exposed Mboat7 HSKO mice. In parallel, ethanol-fed Mboat7 HSKO mice exhibited marked dysregulation of autophagic flux and lysosomal biogenesis when exposed to ethanol. This was associated with impaired transcription factor EB (TFEB)-mediated lysosomal biogenesis and accumulation of autophagosomes. Collectively, this works provides new molecular insights into how genetic variation in MBOAT7 impacts ALD progression in humans and mice. This work is the first to causally link MBOAT7 loss of function in hepatocytes, but not myeloid cells, to ethanol-induced liver injury via dysregulation of lysosomal biogenesis and autophagic flux.

11.
J Nutr Biochem ; 123: 109498, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871767

RESUMO

Perturbations in the metabolism of ammonia, a cytotoxic endogenous metabolite, occur in a number of chronic diseases, with consequent hyperammonemia. Increased skeletal muscle ammonia uptake causes metabolic, molecular, and phenotype alterations including cataplerosis of (loss of tricarboxylic acid cycle (TCA) cycle intermediate) α-ketoglutarate (αKG), mitochondrial oxidative dysfunction, and senescence-associated molecular phenotype (SAMP). L-Isoleucine (Ile) is an essential, branched-chain amino acid (BCAA) that simultaneously provides acetyl-CoA as an oxidative substrate and succinyl-CoA for anaplerosis (providing TCA cycle intermediates). Our multiomics analyses in myotubes and skeletal muscle from hyperammonemic mice and human patients with cirrhosis showed perturbations in BCAA transporters and catabolism. We, therefore, determined if Ile reverses hyperammonemia-induced impaired mitochondrial oxidative function and SAMP. Studies were performed in differentiated murine C2C12 myotubes that were early passage, late passage (senescent), or those depleted of LAT1/SLC7A5 and human induced pluripotent stem cell-derived myotubes (hiPSCM). Ile reverses hyperammonemia-induced reduction in the maximum respiratory capacity, complex I, II, and III functions in early passage murine myotubes and hiPSCM. Consistently, low ATP content and impaired global protein synthesis (high energy requiring cellular process) during hyperammonemia are reversed by Ile in murine myotubes and hiPSCM. Lower abundance of critical regulators of protein synthesis in mTORC1 signaling, and increased phosphorylation of eukaryotic initiation factor 2α are also reversed by Ile. Genetic depletion studies showed that Ile responses are independent of the amino acid transporter LAT1/SLC7A5. Our studies show that Ile reverses the hyperammonemia-induced impaired mitochondrial oxidative function, cataplerosis, and SAMP in a LAT1/SLC7A5 transporter-independent manner.


Assuntos
Hiperamonemia , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Animais , Humanos , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Amônia/metabolismo , Hiperamonemia/tratamento farmacológico , Hiperamonemia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoleucina , Transportador 1 de Aminoácidos Neutros Grandes , Fibras Musculares Esqueléticas/metabolismo
12.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37786711

RESUMO

Generating maximally-fit biological sequences has the potential to transform CRISPR guide RNA design as it has other areas of biomedicine. Here, we introduce model-directed exploration algorithms (MEAs) for designing maximally-fit, artificial CRISPR-Cas13a guides-with multiple mismatches to any natural sequence-that are tailored for desired properties around nucleic acid diagnostics. We find that MEA-designed guides offer more sensitive detection of diverse pathogens and discrimination of pathogen variants compared to guides derived directly from natural sequences, and illuminate interpretable design principles that broaden Cas13a targeting.

13.
Hepatol Commun ; 7(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820283

RESUMO

BACKGROUND: Chronic alcohol consumption impairs gut barrier function and perturbs the gut microbiome. Although shifts in bacterial communities in patients with alcohol-associated liver disease (ALD) have been characterized, less is known about the interactions between host metabolism and circulating microbe-derived metabolites during the progression of ALD. METHODS: A large panel of gut microbiome-derived metabolites of aromatic amino acids was quantified by stable isotope dilution liquid chromatography with online tandem mass spectrometry in plasma from healthy controls (n = 29), heavy drinkers (n = 10), patients with moderate (n = 16) or severe alcohol-associated hepatitis (n = 40), and alcohol-associated cirrhosis (n = 10). RESULTS: The tryptophan metabolites, serotonin and indole-3-propionic acid, and tyrosine metabolites, p-cresol sulfate, and p-cresol glucuronide, were decreased in patients with ALD. Patients with severe alcohol-associated hepatitis and alcohol-associated cirrhosis had the largest decrease in concentrations of tryptophan and tyrosine-derived metabolites compared to healthy control. Western blot analysis and interrogation of bulk RNA sequencing data from patients with various liver pathologies revealed perturbations in hepatic expression of phase II metabolism enzymes involved in sulfonation and glucuronidation in patients with severe forms of ALD. CONCLUSIONS: We identified several metabolites decreased in ALD and disruptions of hepatic phase II metabolism. These results indicate that patients with more advanced stages of ALD, including severe alcohol-associated hepatitis and alcohol-associated cirrhosis, had complex perturbations in metabolite concentrations that likely reflect both changes in the composition of the gut microbiome community and the ability of the host to enzymatically modify the gut-derived metabolites.


Assuntos
Aminoácidos Aromáticos , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Fígado , Humanos , Aminoácidos Aromáticos/metabolismo , Hepatite/metabolismo , Hepatite/fisiopatologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/fisiopatologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/fisiopatologia , Triptofano/metabolismo , Tirosina , Microbioma Gastrointestinal/fisiologia , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia
14.
Cureus ; 15(7): e42699, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37654956

RESUMO

Hereditary angioedema (HAE) is a rare, potentially life-threatening genetic condition characterized by recurrent episodes of localized swelling in various body tissues. Despite advancements in the management and prevention of HAE, high costs limit accessibility to these medications and remain a significant hurdle for many patients. This case report illustrates the implications and life-threatening consequences of the affordability crisis associated with HAE medications. To the authors' knowledge, this case also highlights the first reported case of cocaine serving as an HAE trigger.

15.
Cureus ; 15(6): e40429, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37456501

RESUMO

Celiac disease (CD) is an autoimmune condition presenting with a wide variety of nonspecific gastrointestinal symptoms. It can be difficult to diagnose due to the vagueness of complaints such as diarrhea, anemia due to malabsorption, vitamin or electrolyte deficiencies, and/or failure to thrive. This condition is characterized by a sensitivity to ingested gluten-containing compounds. Blood tests can be used for screening, though confirmatory testing by a small intestine biopsy is needed for diagnosis. Viral infections can trigger autoimmune conditions in individuals. It is possible that viral infections, such as Ebsetein-Barr virus(EBV) or Cytomegalovirus (CMV), can trigger the clinical presentation of celiac disease in certain individuals with genetic predispositions. Early recognition of celiac disease is important to prevent both short and long-term complications and improve the quality of life for the individual. Here, we discuss a case where the patient developed celiac disease only months after a diagnosis of mononucleosis.

16.
iScience ; 26(7): 107133, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37361874

RESUMO

Alcohol abuse causes increased susceptibility to respiratory syndromes like bacterial pneumonia and viral infections like SARS-CoV-2. Heavy drinkers (HD) are at higher risk of severe COVID-19 if they are also overweight, yet the molecular mechanisms are unexplored. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells from lean or overweight HD and healthy controls (HC) after challenge with a dsRNA homopolymer (PolyI:C) to mimic a viral infection and/or with lipopolysaccharide (LPS). All monocyte populations responded to both PolyI:C and LPS with pro-inflammatory gene expression. However, the expression of interferon-stimulated genes, essential for inhibiting viral pathogenesis, was greatly reduced in overweight patients. Interestingly, the number of upregulated genes in response to the PolyI:C challenge was far greater in monocytes from HD compared to HC, including much stronger pro-inflammatory cytokine and interferon-γ signaling responses. These results suggest that increased body weight reduced anti-viral responses while heavy drinking increased pro-inflammatory cytokines.

17.
Clin Transl Med ; 13(5): e1276, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37228227

RESUMO

BACKGROUND: Patients with acute alcohol-associated hepatitis (AH) have immune dysfunction. Mitochondrial function is critical for immune cell responses and regulates senescence. Clinical translational studies using complementary bioinformatics-experimental validation of mitochondrial responses were performed in peripheral blood mononuclear cells (PBMC) from patients with AH, healthy controls (HC), and heavy drinkers without evidence of liver disease (HD). METHODS: Feature extraction for differentially expressed genes (DEG) in mitochondrial components and telomere regulatory pathways from single-cell RNAseq (scRNAseq) and integrated 'pseudobulk' transcriptomics from PBMC from AH and HC (n = 4 each) were performed. After optimising isolation and processing protocols for functional studies in PBMC, mitochondrial oxidative responses to substrates, uncoupler, and inhibitors were quantified in independent discovery (AH n = 12; HD n = 6; HC n = 12) and validation cohorts (AH n = 10; HC n = 7). Intermediary metabolites (gas-chromatography/mass-spectrometry) and telomere length (real-time PCR) were quantified in subsets of subjects (PBMC/plasma AH n = 69/59; HD n = 8/8; HC n = 14/27 for metabolites; HC n = 13; HD n = 8; AH n = 72 for telomere length). RESULTS: Mitochondrial, intermediary metabolite, and senescence-regulatory genes were differentially expressed in PBMC from AH and HC in a cell type-specific manner at baseline and with lipopolysaccharide (LPS). Fresh PBMC isolated using the cell preparation tube generated optimum mitochondrial responses. Intact cell and maximal respiration were lower (p ≤ .05) in AH than HC/HD in the discovery and validation cohorts. In permeabilised PBMC, maximum respiration, complex I and II function were lower in AH than HC. Most tricarboxylic acid (TCA) cycle intermediates in plasma were higher while those in PBMC were lower in patients with AH than those from HC. Lower telomere length, a measure of cellular senescence, was associated with higher mortality in AH. CONCLUSION: Patients with AH have lower mitochondrial oxidative function, higher plasma TCA cycle intermediates, with telomere shortening in nonsurvivors.


Assuntos
Hepatite , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Mitocôndrias/genética
18.
Hepatol Commun ; 7(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185170

RESUMO

BACKGROUND: Macrophage-inducible C-type lectin (Mincle) is expressed on hepatic macrophages and senses ethanol (EtOH)-induced danger signals released from dying hepatocytes and promotes IL-1ß production. However, it remains unclear what and how EtOH-induced Mincle ligands activate downstream signaling events to mediate IL-1ß release and contribute to alcohol-associated liver disease (ALD). In this study, we investigated the association of circulating ß-glucosylceramide (ß-GluCer), an endogenous Mincle ligand, with severity of ALD and examined the mechanism by which ß-GluCer engages Mincle on hepatic macrophages to release IL-1ß in the absence of cell death and exacerbates ALD. METHOD AND RESULTS: Concentrations of ß-GluCer were increased in serum of patients with severe AH and correlated with disease severity. Challenge of hepatic macrophages with lipopolysaccharide and ß-GluCer induced formation of a Mincle and Gsdmd-dependent secretory complex containing chaperoned full-length gasdermin D (Hsp90-CDC37-NEDD4) with polyubiquitinated pro-IL-1ß and components of the Caspase 8-NLRP3 inflammasome loaded as cargo in small extracellular vesicles (sEVs). Gao-binge EtOH exposure to wild-type, but not Mincle-/- and Gsdmd-/-, mice increased release of IL-1ß-containing sEVs from liver explant cultures. Myeloid-specific deletion of Gsdmd similarly decreased the formation of sEVs by liver explant cultures and protected mice from EtOH-induced liver injury. sEVs collected from EtOH-fed wild-type, but not Gsdmd-/-, mice promoted injury of cultured hepatocytes and, when injected into wild-type mice, aggravated Gao-binge EtOH-induced liver injury. CONCLUSION: ß-GluCer functions as a danger-associated molecular pattern activating Mincle-dependent gasdermin D-mediated formation and release of IL-1ß-containing sEVs, which in turn exacerbate hepatocyte cell death and contribute to the pathogenesis of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/toxicidade , Gasderminas , Células de Kupffer/metabolismo , Hepatopatias Alcoólicas/metabolismo
19.
Aging Cell ; 22(7): e13852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37101412

RESUMO

Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.


Assuntos
Hiperamonemia , Sirtuína 3 , Sirtuínas , Humanos , Camundongos , Animais , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Hiperamonemia/metabolismo , Amônia/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Acetilação
20.
Nat Nanotechnol ; 18(7): 798-807, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095220

RESUMO

Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be 'read out' via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Neoplasias/diagnóstico , Neoplasias/genética , DNA , Biomarcadores , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA