Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(3): 227-250, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961903

RESUMO

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Assuntos
Insuficiência Cardíaca , Camundongos , Animais , Cardiomegalia/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ácidos Graxos/metabolismo
2.
Metabolites ; 12(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35323681

RESUMO

Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of these nuclear receptors and their biology has promoted the development of synthetic ligands. The possibility of targeting these receptors to treat NAFLD is promising, as several compounds including Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how they may be utilized to treat NAFLD and subsequent comorbidities.

3.
Cell Mol Gastroenterol Hepatol ; 12(1): 293-320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631374

RESUMO

BACKGROUND & AIMS: Fucosyltransferase 2 (Fut2)-mediated intestinal α1- 2-fucosylation is important for host-microbe interactions and has been associated with several diseases, but its role in obesity and hepatic steatohepatitis is not known. The aim of this study was to investigate the role of Fut2 in a Western-style diet-induced mouse model of obesity and steatohepatitis. METHODS: Wild-type (WT) and Fut2-deficient littermate mice were used and features of the metabolic syndrome and steatohepatitis were assessed after 20 weeks of Western diet feeding. RESULTS: Intestinal α1-2-fucosylation was suppressed in WT mice after Western diet feeding, and supplementation of α1-2-fucosylated glycans exacerbated obesity and steatohepatitis in these mice. Fut2-deficient mice were protected from Western diet-induced features of obesity and steatohepatitis despite an increased caloric intake. These mice have increased energy expenditure and thermogenesis, as evidenced by a higher core body temperature. Protection from obesity and steatohepatitis associated with Fut2 deficiency is transmissible to WT mice via microbiota exchange; phenotypic differences between Western diet-fed WT and Fut2-deficient mice were reduced with antibiotic treatment. Fut2 deficiency attenuated diet-induced bile acid accumulation by altered relative abundance of bacterial enzyme 7-α-hydroxysteroid dehydrogenases metabolizing bile acids and by increased fecal excretion of secondary bile acids. This also was associated with increased intestinal farnesoid X receptor/fibroblast growth factor 15 signaling, which inhibits hepatic synthesis of bile acids. Dietary supplementation of α1-2-fucosylated glycans abrogates the protective effects of Fut2 deficiency. CONCLUSIONS: α1-2-fucosylation is an important host-derived regulator of intestinal microbiota and plays an important role for the pathogenesis of obesity and steatohepatitis in mice.


Assuntos
Fígado Gorduroso/metabolismo , Fucosiltransferases/metabolismo , Intestinos/enzimologia , Obesidade/metabolismo , Animais , Dieta , Fígado Gorduroso/induzido quimicamente , Fucosiltransferases/deficiência , Intestinos/microbiologia , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Galactosídeo 2-alfa-L-Fucosiltransferase
4.
PLoS One ; 15(5): e0227720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407314

RESUMO

Numerous mutational studies have demonstrated that circadian clock proteins regulate behavior and metabolism. Nr1d1(Rev-erbα) is a key regulator of circadian gene expression and a pleiotropic regulator of skeletal muscle homeostasis and lipid metabolism. Loss of Rev-erbα expression induces muscular atrophy, high adiposity, and metabolic syndrome in mice. Here we show that, unlike knockout mice, Nr1d1 heterozygous mice are not susceptible to muscular atrophy and in fact paradoxically possess larger myofiber diameters and improved neuromuscular function, compared to wildtype mice. Heterozygous mice lacked dyslipidemia, a characteristic of Nr1d1 knockout mice and displayed increased whole-body fatty-acid oxidation during periods of inactivity (light cycle). Heterozygous mice also exhibited higher rates of glucose uptake when fasted, and had elevated basal rates of gluconeogenesis compared to wildtype and knockout littermates. Rev-erbα ablation suppressed glycolysis and fatty acid-oxidation in white-adipose tissue (WAT), whereas partial Rev-erbα loss, curiously stimulated these processes. Our investigations revealed that Rev-erbα dose-dependently regulates glucose metabolism and fatty acid oxidation in WAT and muscle.


Assuntos
Dislipidemias/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Comportamento Animal/fisiologia , Relógios Circadianos/genética , Dislipidemias/metabolismo , Dislipidemias/patologia , Ácidos Graxos/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Heterozigoto , Humanos , Metabolismo dos Lipídeos/genética , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Camundongos Knockout , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miofibrilas/genética , Miofibrilas/metabolismo , Miofibrilas/patologia , Fotoperíodo
5.
Nature ; 579(7797): 123-129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103176

RESUMO

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


Assuntos
Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/química , Metabolômica , Microbiota/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/biossíntese , Ácido Cólico/química , Ácido Cólico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Vida Livre de Germes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
6.
Sci Rep ; 7(1): 17142, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215066

RESUMO

Duchenne muscular dystrophy (DMD) is a debilitating X-linked disorder that is fatal. DMD patients lack the expression of the structural protein dystrophin caused by mutations within the DMD gene. The absence of functional dystrophin protein results in excessive damage from normal muscle use due to the compromised structural integrity of the dystrophin associated glycoprotein complex. As a result, DMD patients exhibit ongoing cycles of muscle destruction and regeneration that promote inflammation, fibrosis, mitochondrial dysfunction, satellite cell (SC) exhaustion and loss of skeletal and cardiac muscle function. The nuclear receptor REV-ERB suppresses myoblast differentiation and recently we have demonstrated that the REV-ERB antagonist, SR8278, stimulates muscle regeneration after acute injury. Therefore, we decided to explore whether the REV-ERB antagonist SR8278 could slow the progression of muscular dystrophy. In mdx mice SR8278 increased lean mass and muscle function, and decreased muscle fibrosis and muscle protein degradation. Interestingly, we also found that SR8278 increased the SC pool through stimulation of Notch and Wnt signaling. These results suggest that REV-ERB is a potent target for the treatment of DMD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fibrose/prevenção & controle , Isoquinolinas/farmacologia , Músculo Esquelético/citologia , Distrofia Muscular Animal/complicações , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Regeneração , Tiofenos/farmacologia , Animais , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
7.
Mol Metab ; 6(7): 703-714, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28702326

RESUMO

OBJECTIVE: The loss of skeletal muscle mass and strength are a central feature of traumatic injury and degenerative myopathies. Unfortunately, pharmacological interventions typically fail to stem the long-term decline in quality of life. Reduced Rev-Erb-mediated gene suppression in cultured C2C12 myoblasts has been shown to stimulate myoblast differentiation. Yet the mechanisms that allow Rev-Erb to pleiotropically inhibit muscle differentiation are not well understood. In this study, we sought to elucidate the role of Rev-Erb in the regulation of muscle differentiation and regeneration in vivo. METHODS: Using Rev-Erbα/ß shRNAs, pharmacological ligands, and Rev-Erbα null and heterozygous mice, we probed the mechanism of Rev-Erbα/ß regulation of muscle differentiation and muscle regeneration. RESULTS: ChIP seq analysis of Rev-Erb in differentiating myoblasts showed that Rev-Erbα did not transcriptionally regulate muscle differentiation through cognate Rev-Erb/ROR-response elements but through possible interaction with the cell fate regulator NF-Y at CCAAT-motifs. Muscle differentiation is stimulated by Rev-Erb release from CCAAT-motifs at promoter and enhancer elements of a number of myogenesis proteins. Partial loss of Rev-Erb expression in mice heterozygous for Rev-Erbα accelerated muscle repair in vivo whereas Rev-Erb knockout mice showed deficiencies in regenerative repair compared to wild type mice. These phenotypic differences between heterozygous and knockout mice were not apparently dependent on MRF induction in response to injury. Similarly, pharmacological disruption of Rev-Erb suppressive activity in injured muscle accelerated regenerative repair in response to acute injury. CONCLUSIONS: Disrupting Rev-Erb activity in injured muscle accelerates regenerative muscle repair/differentiation through transcriptional de-repression of myogenic programs. Rev-Erb, therefore, may be a potent therapeutic target for a myriad of muscular disorders.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Regeneração , Adulto , Animais , Fator de Ligação a CCAAT/genética , Diferenciação Celular , Células Cultivadas , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
8.
Phys Biol ; 14(4): 045002, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586319

RESUMO

Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.


Assuntos
Terapia de Alvo Molecular/métodos , Músculo Esquelético/fisiologia , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais
9.
Mol Metab ; 4(4): 353-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830098

RESUMO

OBJECTIVE: Non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, inflammation and fibrosis. There are currently no targeted therapies for NASH. We developed a liver-specific LXR inverse agonist, SR9238, which effectively reduces hepatic lipogenesis in models of obesity and hepatic steatosis. We hypothesized that suppression of lipogenesis, which is pathologically elevated in NASH may suppress progression of hepatic steatosis to NASH. METHODS: NASH was induced in B6 V-lep (ob)/J (ob/ob) mice using a custom complete rodent diet (HTF) containing high amounts of trans-fat, fructose, and cholesterol. Once NASH was induced, mice were treated with SR9238 for one month by i.p. injection. Plasma lipid levels and liver health were analyzed by clinical chemistry. QPCR, western blot, and immunohistochemistry were used to assess disease severity. RESULTS: Ob/ob mice are obese and diabetic thus they are commonly used as models for the study of metabolic diseases. These mice quickly developed the NASH phenotype when provided the HTF diet. The mice develop hepatic steatosis, severe hepatic inflammation and fibrosis on the HTF diet. Treatment with SR9238 significantly reduced the severity of hepatic steatosis and most importantly reduced hepatic inflammation and ameliorated hepatic fibrosis. CONCLUSIONS: Here, we demonstrate that an LXR inverse agonist, SR9238, is effective in reduction of hepatic steatosis, inflammation and fibrosis in an animal model of NASH. These results have important implications for the development of therapeutics for treatment NASH in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA