Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 376: 11-23, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717598

RESUMO

Sesame (Sesamum indicum L.) is an important oilseed crop used for food, feed, medicinal, and industrial applications. Inherently low genetic yield potential and susceptibility to biotic and abiotic stresses contribute to low productivity in sesame. Development of stress resistant varieties coupled with high yield is a viable option to raise the genetic potential of sesame. Conventional phenotype-based breeding methods have made an important role in the last couple of decades by developing several sesame varieties with improved quality, yield, and tolerance to biotic and abiotic stresses. However, due to adverse environmental effects, time consuming to develop new variety, and low genetic gain, conventional phenotype-based approach is not adequate to satisfy the rising population growth. In this context, advanced method of genotype selection via modern techniques of biotechnology plays essential roles in reducing the constraints and boosting sesame production to satisfy the huge demand. In line to this, quantitative trait loci (QTL) mapping is considered as a promising method to address the problems of sesame breeding. Previously, huge data have been generated in the practical use of QTL for sesame improvement. Therefore, this paper aims to review recent advances in the area of QTL mapping for yield and yield related traits in sesame for enhancing and sustaining sesame production. In this section, we present an intensive review on the identification and mapping of the most desirable potential candidate genes/QTLs associated with desirable traits. Moreover, this review focuses on the major QTL regions and/or potential candidate genes and associated molecular markers that could provide potential genetic resources for molecular marker-assisted selection and further cloning of functional genes for yield and yield-related traits as well as various biotic and abiotic stress tolerances. Finally, the summarized QTL mapping data shed light on future directions for enhanced sesame breeding programs.

2.
PLoS One ; 18(9): e0287246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751450

RESUMO

Sesame is an important oilseed crop cultivated in Ethiopia as a cash crop for small holder farmers. However, low yield is one of the main constraints of its cultivation. Boosting and sustaining production of sesame is thus timely to achieve the global oil demand. This study was, therefore, aimed at identifying mutant genotypes targeted to produce better agronomic traits of M2 lines on fourteen Ethiopian sesame genotypes through seed treatment with chemical mutagens. EMS was used as a chemical mutagen to treat the fourteen sesame genotypes. Quantitative and qualitative data were recorded and analyzed using analysis of variance with GenStat 16 software. Post-ANOVA mean comparisons were made using Duncan's Multiple Range Test (p≤ 0.01). Statistically significant phenotypic changes were observed in both quantitative and qualitative agronomic traits of the M2 lines. All mutant genotypes generated by EMS treatment showed a highly significant variation for the measured quantitative traits, except for the traits LBL and LTL. On the other hand, EMS-treated genotypes showed a significant change for the qualitative traits, except for PGT, BP, SSCS, LC, LH and LA traits. Mutated Baha Necho, Setit 3, and Zeri Tesfay showed the most promising changes in desirable agronomic traits. To the best of our knowledge, this study represents the first report on the treatment of sesame seeds with EMS to generate desirable agronomic traits in Ethiopian sesame genotypes. These findings would deliver an insight into the genetic characteristics and variability of important sesame agronomic traits. Besides, the findings set up a foundation for future genomic studies in sesame agronomic traits, which would serve as genetic resources for sesame improvement.


Assuntos
Sesamum , Sesamum/genética , Metanossulfonato de Etila/farmacologia , Fenótipo , Genótipo , Metano
3.
Mol Biol Rep ; 50(8): 6885-6899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326753

RESUMO

Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.


Assuntos
Sesamum , Sesamum/genética , Sesamum/metabolismo , Melhoramento Vegetal , Fenótipo , Sementes/metabolismo , Produtos Agrícolas , Vitaminas
4.
Heliyon ; 9(1): e12912, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711284

RESUMO

This study aimed at investigating the effects of sodium azide (NaN3) on quantitative and qualitative capsule traits in M2 generation of 14 Ethiopian sesame genotypes collected from Humera Agricultural Research Center (HuARC), Tigrai. Both the treatment and control seeds were sown in well-prepared beds in greenhouse to develop M2 plants. Data on quantitative and qualitative traits were collected and analyzed using GenStat 16 software. Results showed significant differences among the M2 seeds treated with 0.75% NaN3. The highest mean number of capsules per plant was recorded in ACC44 and Baha Necho genotypes, while the lowest was recorded in Gumero, Setit 2, Hirhir, ADI, Bounji and Aberghele. The highest mean number of seeds per capsule was recorded in Humera 1, Baha Necho, Zeri Tesfay, and Gondar 1 genotypes and the lowest was recorded in Setit 1, Setit 2 and ADI. The highest mean capsule length was observed in Zeri Tesfay while the lowest was recorded in Aberghele. The qualitative data reported that Hirhir, Setit 1 and Setit 2 were changed from completely shattering to partially shattering, Gumero and Bounji were changed from completely shattering to non-shattering, and Zeri Tesfay was changed from partially shattering to non-shattering. The 14 genotypes were clustered into four distinct groups including cluster I containing six genotypes, cluster II and III containing two genotypes each and cluster IV containing four genotypes. The mutants developed from Zeri Tesafy, ACC44 and Baha Necho genotypes are considered as potential candidate mutants for further utilization in sesame improvement.

5.
Heliyon ; 8(12): e11984, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544826

RESUMO

The present study explored the effect of sodium azide (NaN3) on quantitative and qualitative leaf traits of M2 lines on 14 Ethiopian sesame genotypes collected from Humera Agricultural Research Center, Tigrai, Ethiopia. Qualitative data on leaf color, leaf hairiness, leaf arrangement, leaf shape, basal leaf profile, basal leaf margin, and leaf angle to main stem as well as quantitative data on length of basal leaf, length of top leaf, width of basal leaf, width of top leaf, length of marginal leaf, and width of marginal leaf were recorded and analyzed using analysis of variance, clustering analysis, Mahalanobis distance, and principal component analysis. Generally, treatment of seeds with NaN3 has brought many distinct and statistically significant phenotypic changes on both quantitative and qualitative leaf traits of the M2 lines. The changes in the NaN3 treated and locally adapted genotypes of Gumero and Zeri Tesfay are promising; producing the highest mean length of basal leaf (p ≤ 0.01). NaN3 treated seeds of Baha Necho, Gumero, and Hirhir developed the highest mean width of basal leaf. Locally adapted genotypes have responded positively to NaN3 treatment, generating better leaf traits as compared to the research improved ones. This study was the first of its kind in exploring the effects of NaN3 seed treatment on leaf traits of sesame genotypes. The findings of this study will, therefore, serve as a steppingstone to look into the effects of the changes in sesame yield and initiate future genetic and molecular studies on the responsive genotypes.

6.
ScientificWorldJournal ; 2021: 6660711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007247

RESUMO

The emerging oilseed crop Sesamum indicum, also known as the queen of oilseeds, is being grown globally for its oil content for medicinal and nutritional values. One of the key challenges of sesame cultivation is its low productivity. In the present study, sodium azide (NaN3) was used as a chemical mutagen. The aim of this study was to examine the effect of NaN3 on quantitative and qualitative stem traits in the M2 generation of Ethiopian sesame (Sesamum indicum L.) genotypes. Seeds of fourteen sesame genotypes were used in this study and germinated and grown under greenhouse conditions. Different qualitative and quantitative data were collected and analyzed. Traits such as plant height, ground distance to first distance, and internode length were significantly affected by NaN3 treatment. The highest plant height was recorded in the control on Humera 1 and Baha Necho genotypes, while the lowest was observed on Setit 2 and Hirhir treated with the chemical. The highest ground distance to the first branch was observed in Gumero, while the least ground distance was recorded in Setit 1 in the treated and control genotypes, respectively. The best internode length was recorded on Setit 2 and ADI in the control, while the lowest internode length was observed in Setit 1 genotype treated with sodium azide. Genotypes such as ACC44, ADI, Baha Necho, Borkena, Gonder 1, and Setit 1 treated with NaN3 have showed glabrous type of stem hairiness. All the fourteen genotypes (both treated and control) were clustered into four groups. In conclusion, we observed a highly significant variation among the genotypes due the effect of the chemical and genotypes themselves. Hence, this report would create more genetic diversity for further sesame genetic research improvements.


Assuntos
Mutagênicos/farmacologia , Caules de Planta/efeitos dos fármacos , Característica Quantitativa Herdável , Sementes/efeitos dos fármacos , Sesamum/efeitos dos fármacos , Azida Sódica/farmacologia , Genótipo , Humanos , Fenótipo , Filogenia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Sementes/química , Sementes/genética , Seleção Genética , Sesamum/anatomia & histologia , Sesamum/classificação , Sesamum/genética
7.
Adv Pharmacol Pharm Sci ; 2020: 8835120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964207

RESUMO

This study aimed to describe the gross phytochemical constituents of Aloe elegans Todaro gel and evaluate the characteristics and quality of lab-made hair washing formulations prepared from the gel to show its potential in formulating hair washing shampoos. A. elegans gel mass was prepared from mature, healthy leaves collected from natural stand. Samples of 100% methanol extract of the gel were subjected to standard phytochemical screening and gas chromatography-mass spectroscopy (GC-MS) analysis. Five hair washing formulations (Fs) were, likewise, prepared by mixing 4.0-10.0 mL of gel with one (0.05 mL) to two (0.10 mL) drops of six synthetic and natural ingredients, namely, coconut oil, jojoba oil, olive oil, pure glycerin oil, lemon juice, and vitamin E. The gel to the total ingredient ratios (v/v) of the five formulations were 93 : 7 (F1), 94.5 : 5.5 (F2), 96.4 : 3.6 (F3), and 96.6 : 3.4 (F4 and F5). The formulations were evaluated using sensory inspection and common physicochemical methods. The phytochemical screening and GC-MS analysis revealed that A. elegans gel is the source of important chemical constituents used in the formulation of shampoos and similar products including saponins, capric acid, lauric acid, myristic acid, palmitic acid, linoleic acid, stearic acid, and phytol. Lab-made A. elegans hair washing formulations, especially those with 96.4-96.6% gel, were found to have similar characteristics and qualities with a common marketed shampoo. All the formulations were turbid with characteristic odor as the marketed shampoo. The pH values of the hair washing formulations (6.4-4.6) were comparable to those of the marketed shampoo (6.7). Formulations with higher proportion of gel had better foam stability, higher solid content (26-29%), higher surface tension (33-38 dynes/cm), shorter wetting time (150-160 sec), equivalent viscosities (26.45-26.73 poise), and conditioning performance than the marketed shampoo. These findings demonstrate that A. elegans gel mass can be used in the formulation of good-quality hair washing shampoos. We recommend future studies that aim to develop the phytochemical profile of the plant and a refined protocol of hair washing shampoo formulation.

8.
Int J Anal Chem ; 2020: 6290617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32313547

RESUMO

Aloe L. species (Aloaceae) are ethnobotanically very valuable plants in many communities and civilizations. Nonetheless, very few species are extensively studied to explore their applications in the pharmaceutical and medical, cosmetic and personal care, food and beverage, and detergent industries. This study evaluated the characteristics and quality of lab-based shampoos formulated from the gel of Aloe adigratana Reynolds. Five shampoo formulations, 20 mL each, were prepared from A. adigratana gel in combination with one to two drops of coconut oil, jojoba oil, olive oil, pure glycerin oil, lemon juice, and vitamin E. Gel mass is prepared from mature, healthy leaves collected from the natural stand. The phytochemistry of the gel of the plant was also studied using phytochemical screening, proximate composition, and GC-MS analysis studies. Shampoo formulations with higher proportion (40 to 50% v/v) of A. adigratana gel were found to have comparable characteristics and qualities with a marketed shampoo. They fall within the range of acceptable quality parameters of commercial shampoos. The phytochemical studies of A. adigratana gel showed that the plant is the source of highly valued compounds for the preparation of shampoos. The gel was found to be rich in saponins as well as dodecanoic acid, hexadecanoic acid, and phytol. Future works should focus in the development of refined protocol towards formulating A. adigratana-based shampoos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA