Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38260323

RESUMO

Designing single molecules that compute general functions of input molecular partners represents a major unsolved challenge in molecular design. Here, we demonstrate that high-throughput, iterative experimental testing of diverse RNA designs crowdsourced from Eterna yields sensors of increasingly complex functions of input oligonucleotide concentrations. After designing single-input RNA sensors with activation ratios beyond our detection limits, we created logic gates, including challenging XOR and XNOR gates, and sensors that respond to the ratio of two inputs. Finally, we describe the OpenTB challenge, which elicited 85-nucleotide sensors that compute a score for diagnosing active tuberculosis, based on the ratio of products of three gene segments. Building on OpenTB design strategies, we created an algorithm Nucleologic that produces similarly compact sensors for the three-gene score based on RNA and DNA. These results open new avenues for diverse applications of compact, single molecule sensors previously limited by design complexity.

2.
Nat Commun ; 14(1): 961, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810740

RESUMO

Functional design of ribosomes with mutant ribosomal RNA (rRNA) can expand opportunities for understanding molecular translation, building cells from the bottom-up, and engineering ribosomes with altered capabilities. However, such efforts are hampered by cell viability constraints, an enormous combinatorial sequence space, and limitations on large-scale, 3D design of RNA structures and functions. To address these challenges, we develop an integrated community science and experimental screening approach for rational design of ribosomes. This approach couples Eterna, an online video game that crowdsources RNA sequence design to community scientists in the form of puzzles, with in vitro ribosome synthesis, assembly, and translation in multiple design-build-test-learn cycles. We apply our framework to discover mutant rRNA sequences that improve protein synthesis in vitro and cell growth in vivo, relative to wild type ribosomes, under diverse environmental conditions. This work provides insights into rRNA sequence-function relationships and has implications for synthetic biology.


Assuntos
RNA Ribossômico , Ribossomos , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Biologia Sintética , Fenótipo , Proteínas Ribossômicas/metabolismo
3.
Nat Mach Intell ; 4(12): 1174-1184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567960

RESUMO

Medicines based on messenger RNA (mRNA) hold immense potential, as evidenced by their rapid deployment as COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine learning competition ('Stanford OpenVaccine') on Kaggle, involving single-nucleotide resolution measurements on 6,043 diverse 102-130-nucleotide RNA constructs that were themselves solicited through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less than 6 months, and 41% of nucleotide-level predictions from the winning model were within experimental error of the ground truth measurement. Furthermore, these models generalized to blindly predicting orthogonal degradation data on much longer mRNA molecules (504-1,588 nucleotides) with improved accuracy compared with previously published models. These results indicate that such models can represent in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized messenger RNAs. The integration of two crowdsourcing platforms, one for dataset creation and another for machine learning, may be fruitful for other urgent problems that demand scientific discovery on rapid timescales.

4.
Proc Natl Acad Sci U S A ; 119(18): e2112979119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471911

RESUMO

Internet-based scientific communities promise a means to apply distributed, diverse human intelligence toward previously intractable scientific problems. However, current implementations have not allowed communities to propose experiments to test all emerging hypotheses at scale or to modify hypotheses in response to experiments. We report high-throughput methods for molecular characterization of nucleic acids that enable the large-scale video game­based crowdsourcing of RNA sensor design, followed by high-throughput functional characterization. Iterative design testing of thousands of crowdsourced RNA sensor designs produced near­thermodynamically optimal and reversible RNA switches that act as self-contained molecular sensors and couple five distinct small molecule inputs to three distinct protein binding and fluorogenic outputs. This work suggests a paradigm for widely distributed experimental bioscience.


Assuntos
Crowdsourcing , RNA , Crowdsourcing/métodos , RNA/química , RNA/genética
5.
Nat Commun ; 13(1): 1536, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318324

RESUMO

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.


Assuntos
COVID-19 , RNA , COVID-19/terapia , Humanos , Pseudouridina/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo
6.
ArXiv ; 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34671698

RESUMO

Messenger RNA-based medicines hold immense potential, as evidenced by their rapid deployment as COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine learning competition ("Stanford OpenVaccine") on Kaggle, involving single-nucleotide resolution measurements on 6043 102-130-nucleotide diverse RNA constructs that were themselves solicited through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less than 6 months, and 41% of nucleotide-level predictions from the winning model were within experimental error of the ground truth measurement. Furthermore, these models generalized to blindly predicting orthogonal degradation data on much longer mRNA molecules (504-1588 nucleotides) with improved accuracy compared to previously published models. Top teams integrated natural language processing architectures and data augmentation techniques with predictions from previous dynamic programming models for RNA secondary structure. These results indicate that such models are capable of representing in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized messenger RNAs. The integration of two crowdsourcing platforms, one for data set creation and another for machine learning, may be fruitful for other urgent problems that demand scientific discovery on rapid timescales.

8.
Nucleic Acids Res ; 49(18): 10604-10617, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520542

RESUMO

RNA hydrolysis presents problems in manufacturing, long-term storage, world-wide delivery and in vivo stability of messenger RNA (mRNA)-based vaccines and therapeutics. A largely unexplored strategy to reduce mRNA hydrolysis is to redesign RNAs to form double-stranded regions, which are protected from in-line cleavage and enzymatic degradation, while coding for the same proteins. The amount of stabilization that this strategy can deliver and the most effective algorithmic approach to achieve stabilization remain poorly understood. Here, we present simple calculations for estimating RNA stability against hydrolysis, and a model that links the average unpaired probability of an mRNA, or AUP, to its overall hydrolysis rate. To characterize the stabilization achievable through structure design, we compare AUP optimization by conventional mRNA design methods to results from more computationally sophisticated algorithms and crowdsourcing through the OpenVaccine challenge on the Eterna platform. We find that rational design on Eterna and the more sophisticated algorithms lead to constructs with low AUP, which we term 'superfolder' mRNAs. These designs exhibit a wide diversity of sequence and structure features that may be desirable for translation, biophysical size, and immunogenicity. Furthermore, their folding is robust to temperature, computer modeling method, choice of flanking untranslated regions, and changes in target protein sequence, as illustrated by rapid redesign of superfolder mRNAs for B.1.351, P.1 and B.1.1.7 variants of the prefusion-stabilized SARS-CoV-2 spike protein. Increases in in vitro mRNA half-life by at least two-fold appear immediately achievable.


Assuntos
Algoritmos , RNA de Cadeia Dupla/química , RNA Mensageiro/química , RNA Viral/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Pareamento de Bases , Sequência de Bases , COVID-19/prevenção & controle , Humanos , Hidrólise , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Viral/genética , RNA Viral/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Termodinâmica
9.
bioRxiv ; 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33821271

RESUMO

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop a new RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that "superfolder" mRNAs can be designed to improve both stability and expression that are further enhanced through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.

10.
bioRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32869022

RESUMO

RNA hydrolysis presents problems in manufacturing, long-term storage, world-wide delivery, and in vivo stability of messenger RNA (mRNA)-based vaccines and therapeutics. A largely unexplored strategy to reduce mRNA hydrolysis is to redesign RNAs to form double-stranded regions, which are protected from in-line cleavage and enzymatic degradation, while coding for the same proteins. The amount of stabilization that this strategy can deliver and the most effective algorithmic approach to achieve stabilization remain poorly understood. Here, we present simple calculations for estimating RNA stability against hydrolysis, and a model that links the average unpaired probability of an mRNA, or AUP, to its overall hydrolysis rate. To characterize the stabilization achievable through structure design, we compare AUP optimization by conventional mRNA design methods to results from more computationally sophisticated algorithms and crowdsourcing through the OpenVaccine challenge on the Eterna platform. These computational tests were carried out on both model mRNAs and COVID-19 mRNA vaccine candidates. We find that rational design on Eterna and the more sophisticated algorithms lead to constructs with low AUP, which we term 'superfolder' mRNAs. These designs exhibit wide diversity of sequence and structure features that may be desirable for translation, biophysical size, and immunogenicity, and their folding is robust to temperature, choice of flanking untranslated regions, and changes in target protein sequence, as illustrated by rapid redesign of superfolder mRNAs for B.1.351, P.1, and B.1.1.7 variants of the prefusion-stabilized SARS-CoV-2 spike protein. Increases in in vitro mRNA half-life by at least two-fold appear immediately achievable.

11.
Biochemistry ; 59(22): 2041-2046, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32412236

RESUMO

Homopolymeric adenosine RNA plays numerous roles in both cells and noncellular genetic material. We report herein an unusual poly(A) signature in chemical mapping data generated by the Eterna Massive Open Laboratory. Poly(A) sequences of length seven or more show unexpected results in the selective 2'-hydroxyl acylation read out by primer extension (SHAPE) and dimethyl sulfate (DMS) chemical probing. This unusual signature first appears in poly(A) sequences of length seven and grows to its maximum strength at length ∼10. In a long poly(A) sequence, the substitution of a single A by any other nucleotide disrupts the signature, but only for the 6 or so nucleotides on the 5' side of the substitution.


Assuntos
Ensaios de Triagem em Larga Escala , Poli A/análise , RNA/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA