Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 11(8): 3684-95, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26574452

RESUMO

Ewald summation is an important technique for molecular simulation. In this article, expressions are provided for implementing Ewald summation for any inverse power potential in a range of different simulations. Energies, forces, stresses, and Hessian elements as well as truncation errors are considered. Focus is also given to methods for accelerating Ewald summation in Monte Carlo simulations, particularly in the grand canonical ensemble. Ewald techniques are applied to the simulation of CO2 adsorption and diffusion in the metal-organic framework, MOF-5. These simulations show that optimized Ewald summation can provide increased accuracy at similar computational cost compared to that of pair-based methods.

2.
J Chem Phys ; 129(16): 164712, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19045303

RESUMO

The ability of Au(13), Au(12)Pd, and Au(11)Pd(2) nanoclusters to bind species typically found in the oxidation and reduction of small hydrocarbon has been investigated by means of atom centered density functional theory calculations. Binding energies of CO(2), H(2), CO, O(2), CH(4), H(2)O, *O, *H, *CHO, *CO(2)H, and *OH have been calculated. For pure gold nanoclusters, CO(2), H(2), and CH(4) were found to not bind, and O(2) and H(2)O bound weakly with binding energies less than 15 kcal mol(-1), with the rest binding strongly with binding energies in the range 26-68 kcal mol(-1). Binding additional gas molecules did not greatly reduce the binding energy. Adding palladium to the clusters created binding sites for all of the test gases. Binding to the palladium atom generally increased the binding energy of molecules but decreased the binding energy of radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA