Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816346

RESUMO

The Lower Mississippi River Basin-Long-Term Agroecosystem Research Site (LMRB-LTAR) encompasses six states from Missouri to the Gulf of Mexico and is coordinated by the USDA-ARS National Sedimentation Laboratory, Oxford, MS. The overarching goal of LTAR is to assess regionally diverse and geographically scalable farming practices for enhanced sustainability of agroecosystem goods and services under changing environment and resource-use conditions. The LMRB-LTAR overall goal is to assess sustainable row crop agricultural production systems that integrate regional environmental and socioeconomic needs. Primary row crops in the region include soybeans, corn, cotton, rice, and sugarcane with crop rotations influenced by commodity crop price and other factors. The field-scale common experiment (CE) includes four row crop farms (26-101 ha) established in 2021 and 2023. Three fields are managed with alternative practices, including reduced tillage, cover crops, and automated prescription irrigation, and three fields are managed with prevailing farming practices, consisting of conventional tillage, no cover crop, and nonprescription irrigation. Treatment effects on crop productivity, soil quality, water use efficiency, water quality, and carbon storage are assessed. Research from the LMRB CE will deliver outcomes linked to overarching LTAR network goals, including innovative agricultural systems, strengthened partnerships, data management technologies, and precision environmental tools.

2.
J Environ Qual ; 43(5): 1736-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25603259

RESUMO

Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale.

3.
J Contam Hydrol ; 118(3-4): 184-98, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21056511

RESUMO

To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10(-4)M and 5 × 10(-3)M, or ionic strengths of 5 × 10(-2)M and 0.5M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10(-2)M and 0.5M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally, ripening phenomena were demonstrated to enhance QDs removal or retention in porous media and to be attenuated by the presence of surfactant.


Assuntos
Gases/química , Nanoestruturas/química , Nanotecnologia/métodos , Pontos Quânticos , Água/química , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA