Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Struct Dyn ; 8(3): 034102, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026923

RESUMO

Investigating the early dynamics of chemical systems following ionization is essential for our understanding of radiation damage. However, experimental as well as theoretical investigations are very challenging due to the complex nature of these processes. Time-resolved x-ray absorption spectroscopy on a femtosecond timescale, in combination with appropriate simulations, is able to provide crucial insights into the ultrafast processes that occur upon ionization due to its element-specific probing nature. In this theoretical study, we investigate the ultrafast dynamics of valence-ionized states of urea and its dimer employing Tully's fewest switches surface hopping approach using Koopmans' theorem to describe the ionized system. We demonstrate that following valence ionization through a pump pulse, the time-resolved x-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges reveal rich insights into the dynamics. Excited states of the ionized system give rise to time-delayed blueshifts in the x-ray absorption spectra as a result of electronic relaxation dynamics through nonadiabatic transitions. Moreover, our statistical analysis reveals specific structural dynamics in the molecule that induce time-dependent changes in the spectra. For the urea monomer, we elucidate the possibility to trace effects of specific molecular vibrations in the time-resolved x-ray absorption spectra. For the urea dimer, where ionization triggers a proton transfer reaction, we show how the x-ray absorption spectra can reveal specific details on the progress of proton transfer.

3.
Faraday Discuss ; 228(0): 413-431, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33570531

RESUMO

We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.

4.
Phys Chem Chem Phys ; 22(29): 16843-16854, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666960

RESUMO

Thermal rate constants for Mu + CH4, Mu + C2H6 and Mu + C3H8 and their equivalent reactions with H were evaluated with ab initio instanton rate theory. The potential-energy surfaces are fitted using Gaussian process regression to high-level electronic-structure calculations evaluated around the tunnelling pathway. This method was able to successfully reproduce various experimental measurements for the rate constant of these reactions. However, it was not able to reproduce the faster-than-expected rate of Mu + C3H8 at 300 K reported by Fleming et al. [Phys. Chem. Chem. Phys., 2015, 17, 19901 and Phys. Chem. Chem. Phys., 2020, 22, 6326]. Analysis of our results indicates that the kinetic isotope effect at this temperature is not significantly influenced by quantum tunnelling. We consider many possible factors for the discrepancy between theory and experiment but conclude that in each case, the instanton approximation is unlikely to be the cause of the error. This is in part based on the good agreement we find between the instanton predictions and new multiconfigurational time-dependent Hartree (MCTDH) calculations for Mu + CH4 using the same potential-energy surface. Further experiments will therefore be needed to resolve this issue.

5.
J Chem Phys ; 152(19): 194113, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687224

RESUMO

We present an efficient method to obtain initial state-selective cross sections for bimolecular reactions that can account for certain nuclear quantum effects by employing the ring polymer molecular dynamics approach. The method combines the well known quasiclassical trajectory (QCT) approach with the description of the system in an extended ring polymer phase space. Employing the prototypical Mu/H/D + H2(v = 0, 1) reactions as a benchmark, we show that the presented approach does not violate zero-point energy constraints and that it can also capture the contributions of tunneling through the v = 1 vibrationally adiabatic barrier present for the Mu + H2(v = 1) reaction. This is a significant improvement over the QCT approach with only a small increase in numerical cost.

6.
Struct Dyn ; 6(4): 044102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31372369

RESUMO

Theoretical and experimental methodologies that can characterize electronic and nuclear dynamics, and the coupling between the two, are needed to understand photoinduced charge transfer in molecular building blocks used in organic photovoltaics. Ongoing developments in ultrafast pump-probe techniques such as time-resolved X-ray absorption spectroscopy, using an X-ray free electron laser in combination with an ultraviolet femtosecond laser, present desirable probes of coupled electronic and nuclear dynamics. In this work, we investigate the charge transfer dynamics of a donor-acceptor pair, which is widely used as a building block in low bandgap block copolymers for organic photovoltaics. We simulate the dynamics of the benzothiadiazole-thiophene molecule upon photoionization with a vacuum ultraviolet (VUV) pulse and study the potential of probing the subsequent charge dynamics using time-resolved X-ray absorption spectroscopy. The photoinduced dynamics are calculated using on-the-fly nonadiabatic molecular dynamics simulations based on Tully's Fewest Switches Surface Hopping approach. We calculate the X-ray absorption spectrum as a function of time after ionization at the Hartree-Fock level. The changes in the time-resolved X-ray absorption spectrum at the sulfur K-edge reveal the ultrafast charge carrier dynamics in the molecule occurring on a femtosecond time scale. These theoretical findings anticipate that ultrafast time-resolved X-ray absorption spectroscopy using an X-ray probe in combination with a VUV pump offers a new approach to investigate the detailed dynamics of organic photovoltaic materials.

7.
Phys Chem Chem Phys ; 21(31): 17054-17062, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31259974

RESUMO

Thermal rate constants and kinetic isotope effects (KIE) for the prototypical water-forming D2 + OH → D + DHO reaction are calculated for temperatures between 150 K and 1000 K using rigorous quantum dynamics simulations including all degrees of freedom. Very good comparison with experimental results is found for the thermal rate constants and overall good comparison with experimental KIE is obtained. Thermal rate constants and KIE for temperatures above 300 K are obtained with rigorous close-coupling calculations and employing the J-shifting approximation for overall rotational motion. Very good agreement is found validating the J-shifting approximation for this reaction. Thermal rate constants and KIE below 300 K are thus only obtained employing J-shifting. Good comparison with approximate methods for the calculation of thermal rate constants is found. The KIE for the title reaction increases notably below 250 K, which is found to be mostly due to an increased tunneling contribution in the H2 + OH reaction at these temperatures. Furthermore, microcanonical rates are obtained which can serve as benchmarks for the further development of approximate rate constant calculations.

8.
J Chem Phys ; 150(11): 114105, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901996

RESUMO

The performance of the ring polymer molecular dynamics (RPMD) approach to simulate typical photodissociation processes is assessed. The correct description of photodissociation requires the calculation of correlation functions or expectation values associated with non-equilibrium initial conditions, which was shown to be possible with RPMD very recently [J. Chem. Phys. 145, 204118 (2016)]. This approach is combined with treatment of the nonadiabatic dynamics employing the ring polymer surface hopping approach (RPSH), which is based on Tully's fewest switches surface hopping (FSSH) approach. The performance is tested using one-dimensional photodissociation models. It is found that RPSH with non-equilibrium initial conditions can well reproduce the time-dependent dissociation probability, and adiabatic and diabatic populations for cases where the crossing point is below and above the Franck-Condon point, respectively, while standard FSSH fails to reproduce the exact quantum dynamics in the latter case. Thus, it is shown that RPSH is an efficient and accurate alternative to standard FSSH, which is one of the most widely employed approaches to study photochemistry.

9.
J Chem Phys ; 150(4): 044505, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709301

RESUMO

Highly intense, sub-picosecond terahertz (THz) pulses can be used to induce ultrafast temperature jumps (T-jumps) in liquid water. A supercritical state of gas-like water with liquid density is established, and the accompanying structural changes are expected to give rise to time-dependent chemical shifts. We investigate the possibility of using extreme ultraviolet photoelectron spectroscopy as a probe for ultrafast dynamics induced by sub-picosecond THz pulses of varying intensities and frequencies. To this end, we use ab initio methods to calculate photoionization cross sections and photoelectron energies of (H2O)20 clusters embedded in an aqueous environment represented by point charges. The cluster geometries are sampled from ab initio molecular dynamics simulations modeling the THz-water interactions. We find that the peaks in the valence photoelectron spectrum are shifted by up to 0.4 eV after the pump pulse and that they are broadened with respect to unheated water. The shifts can be connected to structural changes caused by the heating, but due to saturation effects they are not sensitive enough to serve as a thermometer for T-jumped water.

10.
Angew Chem Int Ed Engl ; 57(40): 13150-13153, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109753

RESUMO

Thermal rate constants for the prototypical water-forming reaction H2 +OH→H+H2 O were obtained for temperatures between 150 K and 600 K by rigorous quantum dynamics calculations including all degrees of freedom. Results are reported for a recent, highly accurate neural network potential (NN1) and compared to results obtained on a previous, semi-empirical potential (SE). The rate constants computed on both potentials significantly differ in their temperature dependence, and differences of over one order of magnitude in the rates were found. The rate constants computed for the NN1 potential compare very well to experimental work. Furthermore, the influence of overall rotation is discussed for the title reaction. While previous close-coupling simulations were limited to thermal rate constants above room temperature, we report rate constants for temperatures as low as 250 K. The high-level results reported here provide an accurate benchmark for the development of approximate methods for the calculation of thermal as well as microcanonical rate constants.

11.
Nat Commun ; 9(1): 2142, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849173

RESUMO

Reaction pathways of biochemical processes are influenced by the dissipative electrostatic interaction of the reagents with solvent water molecules. The simulation of these interactions requires a parametrization of the permanent and induced dipole moments. However, the underlying molecular polarizability of water and its dependence on ions are partially unknown. Here, we apply intense terahertz pulses to liquid water, whose oscillations match the timescale of orientational relaxation. Using a combination of terahertz pump / optical probe experiments, molecular dynamics simulations, and a Langevin dynamics model, we demonstrate a transient orientation of their dipole moments, not possible by optical excitation. The resulting birefringence reveals that the polarizability of water is lower along its dipole moment than the average value perpendicular to it. This anisotropy, also observed in heavy water and alcohols, increases with the concentration of sodium iodide dissolved in water. Our results enable a more accurate parametrization and a benchmarking of existing and future water models.

12.
J Chem Phys ; 148(20): 204304, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865815

RESUMO

Thermal rate constants for the prototypical H2 + OH → H + H2O reaction are calculated using quantum dynamics simulations including all degrees of freedom and accurately accounting for overall rotation via close-coupling. Results are reported for a recent, highly accurate neural network potential [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)] and compared to results obtained on a previous, semi-empirical potential. Thermal rate constants between 300 K and 1000 K are reported and very good agreement with experimental work is found. Additionally, reasonable agreement for the close-coupling simulations on both potentials is found. In contrast to previous work, we find that the J-shifting approximation works well for the title reaction given that a high-level PES is used for the dynamics calculation. Moreover, the importance of treating the spin-orbit coupling in the reactant partition function is discussed. The highly accurate results reported here will provide a benchmark for the development of approximate methods.

13.
J Phys Chem A ; 122(23): 5211-5222, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29776312

RESUMO

Ultrashort, high-intensity terahertz (THz) pulses, e.g., generated at free-electron laser facilities, allow for direct investigation as well as the driving of intermolecular modes in liquids like water and thus will deepen our understanding of the hydrogen bonding network. In this work, the temperature-jump (T-jump) of water induced by THz radiation is simulated for ten different THz frequencies in the range from 3 to 30 THz and five different pulse intensities in the range from 1 × 1011 to 5 × 1012 W/cm2 employing both ab initio molecular dynamics (AIMD) and force field molecular dynamics (FFMD) approaches. The most efficient T-jump can be achieved with 16 THz pulses. Three distinct T-jump mechanisms can be uncovered. For all cases, the T-jump mechanism proceeds within tens of femtoseconds (fs). For frequencies between 10 and 25 THz, most of the energy is initially transferred to the rotational degrees of freedom. Subsequently, the energy is redistributed to the translational and intramolecular vibrational degrees of freedom within a maximum of 500 fs. For the lowest frequencies considered (7 THz and below), translational and rotational degrees of freedom are heated within tens of fs as the THz pulse also couples to the intermolecular vibrations. Subsequently, the intramolecular vibrational modes are heated within a few hundred fs. At the highest frequencies considered (25 THz and above), vibrational and rotational degrees of freedom are heated within tens of fs, and energy redistribution to the translational degrees of freedom happens within several hundred fs. Both AIMD and FFMD simulations show a similar dependence of the T-jump on the frequency employed. However, the FFMD simulations overestimate the total energy transfer around the main peak and drop off too fast toward frequencies higher and lower than the main peak. These differences can be rationalized by missing elements, such as the polarizability, in the TIP4P/2005f force field employed. The feasibility of performing experiments at the studied frequencies and intensities as well as important issues such as energy efficiency, penetration depth, and focusing are discussed.

14.
Phys Rev Lett ; 120(12): 123001, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694080

RESUMO

The effect of nuclear dynamics and conical intersections on electronic coherences is investigated employing a two-state, two-mode linear vibronic coupling model. Exact quantum dynamical calculations are performed using the multiconfiguration time-dependent Hartree method. It is found that the presence of a nonadiabatic coupling close to the Franck-Condon point can preserve electronic coherence to some extent. Additionally, the possibility of steering the nuclear wave packets by imprinting a relative phase between the electronic states during the photoionization process is discussed. It is found that the steering of nuclear wave packets is possible given that a coherent electronic wave packet embodying the phase difference passes through a conical intersection. A conical intersection close to the Franck-Condon point is thus a necessary prerequisite for control, providing a clear path towards attochemistry.

15.
J Phys Chem A ; 122(4): 1004-1010, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298485

RESUMO

The challenges of simulating extreme ultraviolet (XUV)-induced dissociation dynamics of organic molecules on a multitude of coupled potential energy surfaces are discussed for the prototypical photoionization of benzene. The prospects of Koopmans' theorem-based electronic structure calculations in combination with classical trajectories and Tully's fewest switches surface hopping are explored. It is found that a Koopmans' theorem-based approach overestimates the CH dissociation barrier and thus underestimates the fragmentation yield. However, the nonadiabatic population dynamics are in good agreement with previous approaches, indicating that the Koopmans' theorem based potentials are well described around the Franck-Condon point. This is explicitly tested for the ground state potential of the benzene cation employing CASPT2 calculations, for which very good agreement is found. This work highlights the need for efficient electronic structure approaches that can treat medium-sized organic molecules with a multitude of coupled excited states and several dissociation channels.

16.
J Phys Chem Lett ; 8(18): 4640-4644, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28876957

RESUMO

Fundamental properties of molecular liquids are governed by long-range interactions that most prominently manifest at terahertz (THz) frequencies. Here we report the detection of nonlinear THz photon-echo (rephasing) signals in liquid bromoform using THz-THz-Raman spectroscopy. Together, the many observed signatures span frequencies from 0.5 to 8.5 THz and result from couplings between thermally populated ladders of vibrational states. The strongest peaks in the spectrum are found to be multiquantum dipole and 1-quantum polarizability transitions and may arise from nonlinearities in the intramolecular dipole moment surface driven by intermolecular interactions.

18.
J Chem Phys ; 145(20): 204118, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908103

RESUMO

We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t4) and O(t1), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t5) and O(t2), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

19.
J Phys Chem Lett ; 7(18): 3616-20, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27556887

RESUMO

A previously unexplained effect in the relative rate of excited-state intramolecular proton transfer (ESIPT) in related indole derivatives is investigated using both theory and experiment. Ultrafast spectroscopy [ J. Phys. Chem. A, 2015, 119, 5618-5625 ] found that although the diol 1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole exhibits two equivalent intramolecular hydrogen bonds, the ESIPT rate associated with tautomerization of either hydrogen bond is a factor of 2 slower than that of the single intramolecular hydrogen bond in the ethoxy-ol 1,3-bis(2-pyridylimino)-4-ethoxy-7-hydroxyisoindole. Excited-state electronic structure calculations suggest a resolution to this puzzle by revealing a seesaw effect in which the two hydrogen bonds of the diol are both longer than the single hydrogen bond in the ethoxy-ol. Semiclassical rate theory recovers the previously unexplained trends and leads to clear predictions regarding the relative H/D kinetic isotope effect (KIE) for ESIPT in the two systems. The theoretical KIE predictions are tested using ultrafast spectroscopy, confirming the seesaw effect.

20.
Proc Natl Acad Sci U S A ; 113(25): 6857-61, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274067

RESUMO

We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA