Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 315(6): E1121-E1132, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226997

RESUMO

Gain-of-function (GOF) mutations in the ATP-sensitive potassium (KATP) channels cause neonatal diabetes. Despite the well-established genetic root of the disease, pathways modulating disease severity and treatment effectiveness remain poorly understood. Patient phenotypes can vary from severe diabetes to remission, even in individuals with the same mutation and within the same family, suggesting that subtle modifiers can influence disease outcome. We have tested the underlying mechanism of transient vs. permanent neonatal diabetes in KATP-GOF mice treated for 14 days with glibenclamide. Some KATP-GOF mice show remission of diabetes and enhanced insulin sensitivity long after diabetes treatment has ended, while others maintain severe insulin-resistance. However, insulin sensitivity is not different between the two groups before or during diabetes induction, suggesting that improved sensitivity is a consequence, rather than the cause of, remission, implicating other factors modulating glucose early in diabetes progression. Leptin, glucagon, insulin, and glucagon-like peptide-1 are not different between remitters and nonremitters. However, liver glucose production is significantly reduced before transgene induction in remitter, relative to nonremitter and nontreated, mice. Surprisingly, while subsequent remitter animals exhibited normal serum cytokines, nonremitter mice showed increased cytokines, which paralleled the divergence in blood glucose. Together, these results suggest that systemic inflammation may play a role in the remitting versus non-remitting outcome. Supporting this conclusion, treatment with the anti-inflammatory meloxicam significantly increased the fraction of remitting animals. Beyond neonatal diabetes, the potential for inflammation and glucose production to exacerbate other forms of diabetes from a compensated state to a glucotoxic state should be considered.


Assuntos
Diabetes Mellitus/metabolismo , Glibureto/uso terapêutico , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Animais , Glicemia/metabolismo , Citocinas/sangue , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Leptina/sangue , Camundongos , Camundongos Transgênicos , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
2.
Diabetes Obes Metab ; 20(11): 2574-2584, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29896801

RESUMO

AIMS: To examine the effects of a high-fat-diet (HFD) on monogenic neonatal diabetes, without the confounding effects of compensatory hyperinsulinaemia. METHODS: Mice expressing KATP channel gain-of-function (KATP -GOF) mutations, which models human neonatal diabetes, were fed an HFD. RESULTS: Surprisingly, KATP -GOF mice exhibited resistance to HFD-induced obesity, accompanied by markedly divergent blood glucose control, with some KATP -GOF mice showing persistent diabetes (KATP -GOF-non-remitter [NR] mice) and others showing remission of diabetes (KATP -GOF-remitter [R] mice). Compared with the severely diabetic and insulin-resistant KATP -GOF-NR mice, HFD-fed KATP -GOF-R mice had lower blood glucose, improved insulin sensitivity, and increased circulating plasma insulin and glucagon-like peptide-1 concentrations. Strikingly, while HFD-fed KATP -GOF-NR mice showed increased food intake and decreased physical activity, reduced whole body fat mass and increased plasma lipids, KATP -GOF-R mice showed similar features to those of control littermates. Importantly, KATP -GOF-R mice had restored insulin content and ß-cell mass compared with the marked loss observed in both HFD-fed KATP -GOF-NR and chow-fed KATP -GOF mice. CONCLUSION: Together, our results suggest that restriction of dietary carbohydrates and caloric replacement by fat can induce metabolic changes that are beneficial in reducing glucotoxicity and secondary consequences of diabetes in a mouse model of insulin-secretory deficiency.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/genética , Dieta Hiperlipídica , Mutação com Ganho de Função , Células Secretoras de Insulina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Feminino , Técnicas de Introdução de Genes , Resistência à Insulina/genética , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Especificidade de Órgãos/genética , Indução de Remissão
3.
R Soc Open Sci ; 4(2): 160808, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28386438

RESUMO

ATP-sensitive potassium channels (KATP channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, KATP channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism-secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet ß-cells express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish KATP using diazoxide, a specific KATP channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That ß-cell KATP channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA